
Internalized State-Selection: Generation and Integration of

Quasi-Linear Differential-Algebraic Equations

Christoph Höger1 Andreas Steinbrecher2

1Institute of Software Engineering and Theoretical Computer Science, TU Berlin, Germany,

christoph.hoeger@tu-berlin.de
2Department of Mathematics, TU Berlin, Germany, anst@math.tu-berlin.de

Abstract

In modeling and simulation of dynamical processes

frequently higher index differential-algebraic equations

(DAEs) arise. Since an attempt to solve higher-index

DAEs directly yields several numerical problems, a reg-

ularization in combination with a robust and efficient in-

tegration is required. QUALIDAES is a DAE solver de-

signed to make explicit use of such a regularization. It

allows for the solution of over-determined quasi-linear

DAEs of the form M(x, t)ẋ = f (x, t), 0 = g(x, t). Such

DAEs arise naturally if a quasi-linear DAE is regularized

by augmentation with the set of its (hidden) constraints.

General DAEs can be brought into the quasi-linear form.

To this end, equations can be transformed into the spe-

cific input format expected by QUALIDAES. This trans-

formation can be implemented in a functional style and

yields a non-trivial result. Additionally it provides an on-

the-fly solution for the occurrence of higher-order deriva-

tives.

Keywords: Differential-Algebraic Equations, Quasi-

Linear, Modelica, Translation, Regularization, Solver,

QUALIDAES

1 Introduction

MODELICA is a language for modeling of dynamical pro-

cesses. In general, the model equations that describe

the dynamical process consist of differential equations

in combination with algebraic constraints, i.e., we have

to deal with so-called differential-algebraic equations

(DAEs).

The solutions of such systems have to satisfy the al-

gebraic constraints, but, in general, not all constraints

are stated in an explicit way. In particular, if the re-

sulting system of DAEs is of higher index there exist

so-called hidden constraints and the numerical treatment

leads to instabilities, inconsistencies and possibly non-

convergence of the numerical methods, see Brenan et al.

(1996); Griepentrog and März (1986); Hairer and Wan-

ner (1996); Kunkel and Mehrmann (2006). On the other

hand, if a DAE does not contain any hidden constraint

then its numerical treatment by use of implicit ordinary

differential equation methods is not affected by instabili-

ties. Furthermore, all constraints are preserved such that

no drift-off effects arise in the numerical treatment.

Thus, a regularization or remodeling of the model

equations resulting in an equivalent formulation with no

hidden constraints is required to guarantee stable and

robust numerical computations, see also Gear (1988);

Hairer and Wanner (1996); Kunkel and Mehrmann

(2006); Steinbrecher (2006).

The current state of the art in many modeling and

simulation tools to deal with high index DAEs is to use

some kind of analysis of the system to identify the con-

straints, to determine the index of the system, and to com-

pute an index-reduced system model. Hereby, a crucial

step is the so-called state selection that is required in or-

der to introduce new algebraic variables (the so-called

dummy derivatives) for the selected differential compo-

nents of the DAE system in order to obtain a regular

index-reduced formulation.

In this paper, we present in Section 2 a different reg-

ularization approach for the remodeling of dynamical

systems that uses the hidden constraints to construct an

over-determined system regularization that can be solved

using a specially adapted numerical integrator imple-

mented in the software package QUALIDAES (QUAsi

LInear DAE Solver), see Section 3. This approach is

developed for the numerical treatment of quasi-linear

DAEs of the form

E(x, t)ẋ = k(x, t) (1)

and has the great advantage that the problem of state se-

lection can be moved into the numerical integrator such

that it can be performed during the run-time of the simu-

lation.

The software package QUALIDAES requires and ex-

ploits the quasi-linear structure of the model equations.

If QUALIDAES is used in the MODELICA-framework

then this requires a representation of the MODELICA

model equation in quasi-linear form, as illustrated in Sec-

tion 4.

DOI
10.3384/ecp1511899

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

99

2 Regularization Using Over-

determined Formulations

In the following, we consider quasi-linear DAEs of the

form (1) on the domain I = [t0, t f] with initial values

x(t0) = x0 ∈ R
n, where E ∈ C (Rn×I,Rn,n) is called the

leading matrix of the quasi-linear DAE and k ∈ C (Rn×
I,Rn) its right-hand side. Furthermore, x : I→ R

n rep-

resent the unknown variables. The DAE system (1) is

assumed to be uniquely solvable and non-redundant. Fur-

thermore, we assume that the rank of the leading matrix

E is constant for all (x, t) ∈ R
n×I and that the rank of

the partial derivatives of the (hidden) constraints with re-

spect to x is constant for all consistent (x, t) ∈ R
n×I.

Regularization approaches for high index DAEs like the

Dummy Derivatives Approach from Mattsson and Söder-

lind (1993) or index reduction by Minimal Extension

from Kunkel and Mehrmann (2004) consists of adding

the hidden constraints to the model equations and the se-

lection of certain differential components of the state x

that can then be replaced by new algebraic variables in

order to lower the index of the system and to obtain a

new regular index-reduced system formulation. Hereby,

a problem is that the selection of differential components

can change during the numerical integration. Thus, if

this state selection is performed outside the numerical in-

tegrator this often takes too long and is computational

inefficient.

In the following, we will present a regularization of

quasi-linear DAEs (1) of higher index, i.e., that con-

tain hidden constraints. This regularization is based on

an over-determined system formulation in order to over-

come the difficulties in the numerical simulation.

Certain analysis tools, like Pantelides’ algorithm (Pan-

telides (1988)), the structural analysis by Pryce (Pryce

(2001)), the analysis via the strangeness-index concept

(Kunkel and Mehrmann (2006)), the algebraic procedure

proposed in Steinbrecher (2006), a combined structural-

algebraic approach proposed in Scholz and Steinbrecher

(2013), or other, gives us the required information about

the hidden constraints in the system.

These information consists mainly of the order of dif-

ferentiation of (parts of) the DAE to determine the hidden

constraints by algebraic manipulations of the equations

and their derivatives. The minimal order of differenti-

ation of (parts of) the DAE required for the determina-

tion of a certain (hidden) constraint is called the level of

the (hidden) constraint. Furthermore, the maximal level

νc of existing hidden constraints is called maximal con-

straint level of the DAE. See Steinbrecher (2006). Let

us denote the set of all constraints including the hidden

constraints by

0 = h(x, t). (2)

Adding the hidden constraints to the quasi-linear DAE

(1) leads to an over-determined DAE

E(x, t)ẋ = k(x, t), (3a)

0 = h(x, t) (3b)

consisting of a differential part (3a) and an algebraic part

(3b). This over-determined formulation (3) then is equiv-

alent to the original DAE (1) in the sense that both have

the same solution set, i.e., for a given consistent initial

value, the corresponding initial value problems have the

same solution. Note that the leading matrix E not nec-

essarily has to have full rank and the unknowns x are un-

changed, i.e., a transformation of the state variables is not

necessary and the number of unknowns is not increased

(in contrast to the dummy derivative approach).

The over-determined formulation (3) has the advan-

tage that all constraints explicitly are stated, Therefore,

for (3) no hidden constraints exist. A further advantage

of the over-determined formulation (3) is the fact that it

is not necessary to apply analytic manipulations for the

determination of a square, regular system of DAEs.

The proposed remodeling can be seen as regularization

of the model equations. For more details on the regu-

larization of quasi-linear DAEs we refer to Steinbrecher

(2006).

Example 2.1 The Cartesian Pendulum: Let us con-

m

L

(p(t),q(t))

Y

X

g

ϕ

Figure 1. Topology of the Cartesian pendulum

sider the Cartesian pendulum, see Figure 1. We choose

absolute coordinates p and q denoting the position of the

mass m in the two dimensional space R
2 for the descrip-

tion of the configuration of the pendulum. The equations

of motion have the form

ṗ = v, (4a)

q̇ = w, (4b)

mv̇ = −2pλ , (4c)

mẇ = −mg−2qλ , (4d)

0 = p2 +q2 −L2, (4e)

where v and w denote the velocities of the mass point in

X- and Y -direction while λ corresponds to the Lagrange

Internalized State-Selection: Generation and Integration of Quasi-Linear Differential-Algebraic Equations

100 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511899

multiplier. The constraint (4e) is of level 0 since no dif-

ferentiation of the DAE is necessary to determine this

constraint. The hidden constraint of level 1 obtained af-

ter only one total differentiation of (4e) with respect to t

and replacing ẋ and ẏ using (4a), (4b) is given by

0 = 2pv+2qw. (4f)

Furthermore, from the second total derivative of (4e)

with respect to t and replacing ẍ, ÿ using the the first total

derivative of (4a), (4b), and subsequent replacing of ẋ, ẏ,

v̇, and ẇ using (4a)-(4d) we get the hidden constraint of

level 2 as

0 = 2v2 +2w2 +2p(−2pλ)/m (4g)

+2q(−mg−2qλ)/m.

A further differentiation of the DAE does not lead

to further constraints. Consequently the minimal or-

der of differentiation of (parts of) the DAE to deter-

mine all (hidden) constraints is two. Therefore, the

model equations for the Cartesian pendulum is a set

of DAEs of maximal constraint level νc = 2. With

all hidden constraints the regularized DAE via over-

determined formulation is given by equations (4a)-(4g).

This regularized DAE consists of 7 equations for 5 un-

knowns x =
[

p q v w λ
]T

and, due to its over-

determinedness, is not solvable within the MODELICA-

framework, e.g., OpenModelica, Dymola, MapleSim. ⊳

3 The Software PackageQUALIDAES

In the following, we consider over-determined quasi-

linear DAEs of the form

M(x, t)ẋ = f (x, t), (5a)

0 = g(x, t) (5b)

on the domain I= [t0, t f] with initial values x(t0) = x0 ∈
R

n, where M ∈C (Rn×I,RmD,n) is called the leading ma-

trix of the quasi-linear DAE and f ∈ C (Rn×I,RmD) as

well as g ∈ C (Rn×I,RmC) form its right-hand side.

Such over-determined formulations of the form (5) have

currently the disadvantage that within the common

MODELICA-frameworks it is impossible to model and

integrate over-determined systems. Therefore, a direct

numerical integrator for possibly over-determined formu-

lations in form (5) has been implemented in the software

package QUALIDAES which requires and exploits the

quasi-linear structure of the model equations.

The software package QUALIDAES is suited for general

over-determined quasi-linear DAEs of the form (5) with

the assumption that the constraints (5b) are neither con-

tradictory nor redundant, i.e.,

rank

(
∂g

∂x
(x, t)

)
= mC (6)

for all consistent (x, t) ∈ R
n × I. For a successful inte-

gration with QUALIDAES DAEs (5) with no hidden con-

straints are preferable. But often an integration of DAEs

(5) containing hidden constraints of level 1 at most is suc-

cessful. In case of no hidden constraints it holds

rank

([
M(x, t)
∂g
∂x
(x, t)

])
= n (7)

for all consistent (x, t) ∈ R
n × I. Such over-determined

formulations with no hidden constraints are obtained e.g.

by application of the regularization approach described

in the previous section.

The software package QUALIDAES is implemented in

FORTRAN.

Certain features of QUALIDAES are to be emphasized

which distinguish QUALIDAES from other solvers. Im-

portant is the fact that QUALIDAES respects all provided

constraints. In particular, if no hidden constraints exist

in (5), i.e., (7) holds, drift or instabilities are avoided

during the numerical integration.

Interface for the model equations: The information of

the model equations needed for the integration algorithm

has to be provided in residual form, as following. The

user or the calling subroutine has to provide the residual

of the right hand side f for the differential part, the

residual of the right hand side g for the constraint part,

as well as the leading matrix M. All evaluated at a point

(x, t). Furthermore, there exists a rough graphical user

interface in MATLAB (Higham and Higham (2005))

suited for model equations provided in MODELICA, see

Altmeyer and Steinbrecher (2013).

Integration method: In QUALIDAES the 3-stage im-

plicit Runge-Kutta Method Radau IIa of fixed order 5,

see Hairer and Wanner (1996), as discretization of the

overdetermined formulation is implemented.

As mentioned above, the code QUALIDAES offers the

possibility to combine the discretization method with

the regularization technique presented in the previous

section. Therefore, the algorithm may use the over-

determined regularization in form (5) as basis for the dis-

cretization. For more details on the discretization we re-

fer to Steinbrecher (2006).

The discretization of the over-determined system (5)

using the 3-stage Radau IIa method leads to an over-

determined nonlinear stage equation of the form

0 =

[
D(ξk)
C(ξk)

]
with ξk =

Xk1

Xk2

Xk3

 (8)

for the determination of the three stages Xki ∈ R
n, i =

1,2,3 on the current integration interval [tk, tk+1] with

tk+1 = tk +δk. Here δk denotes the current step size. The

stages Xki ∈ R
n, i = 1,2,3 approximate the solution at

the points tki = tk + ciδk. In (8) D represents the dis-

cretization of the differential part and C represents the

discretization of the constraints to determine the next it-

erate xk+1 from ξk. Unfortunately, the nonlinear system

Session 2C: Simulation Techniques

DOI
10.3384/ecp1511899

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

101

(8) is no longer solvable because of discretization and

rounding errors. Therefore, it is only possible to find an

approximation ξ̃k which minimizes the residual r of size

3(mD +mC) of the discretized over-determined DAE in

a certain sense with

r =

[
rD

rC

]
=

[
D(ξk)
C(ξk)

]
.

In general, such an approximation yields a residual rC 6=
0, which in turn leads to unfulfilled constraints, i.e.,

C(ξk) 6= 0 and, therefore, also g(xk, tk) 6= 0, not even

within machine precision. This would lead to the typical

difficulties in the numerical integration of higher index

DAEs, i.e., instabilities, convergence problems, inconsis-

tencies, or the solution drifts away from the original so-

lution manifold.

In order to avoid these problems it is necessary to make

sure that the constraints are always satisfied during nu-

merical integration. This can be achieved if the nonlinear

system (8) is treated separately such that ξ̃k satisfies the

lower part, i.e., the constraints, exactly or within a pre-

scribed precision, while ξ̃k yields a minimal residual in

the upper part, i.e., in the differential part.

For solving (8) as described above, an adaption of a sim-

plified Newton method is implemented in QUALIDAES.

For more details on Newton methods we refer to Deufl-

hard (2004). In particular, a constant Newton iteration

matrix is used for a certain number of Newton iteration

steps inside the current integration step [tk, tk+1]. The us-

age of the simplified Newton method saves evaluation of

Jacobians and decomposition of the Newton iteration ma-

trix in every except the first Newton iteration step. There-

fore, during the Newton iteration a linear system of the

form
[

JD

JC

]
∆ j =

[
d(ξ j

k)

c(ξ j
k)

]
(9)

has to be solved in each Newton iteration step j = 0,1, ...

to obtain the next iteration ξ̃ j+1
k = ξ̃ j

k +∆ j in the Newton

iteration. The upper part in (9) represents the differential

part while the lower part represents the constraint part.

The solving of the linear algebraic system (9) has to be

done in an efficient but stable way. For that the code

QUALIDAES decomposes the differential part and the

algebraic part via different decomposition methods. The

LU decomposition with full pivoting is used for the

constraint part and the LU decomposition with partial

pivoting is used for the differential part. While the first

full pivoting detects the set of locally constrained state

variables the second decomposition is faster and detects

a minimal set of differential equations for the locally

dynamic state variables. For a J ∈ N we accept ξ̃ J
k as the

numerical solution of (8) if a certain stopping criteria of

the Newton iteration is satisfied. Furthermore, from this

ξ̃ J
k we determine the next iterate xk+1 as approximation

of the solution at tk+1.

In particular, this strategy leads to a (numerically)

precise fulfillment of the constraints while solving the

differential part in an "approximate sense". For more

details see also Scholz and Steinbrecher (2014).

Further features of QUALIDAES: The numerical inte-

gration implemented in QUALIDAES uses a variable step

size strategy. For that an adaptation of the error estima-

tion and the step size control implemented in the code

RADAU5 is used in QUALIDAES.

Furthermore, QUALIDAES offers the possibility to

check and (if necessary) to correct initial values. For that

the user or the calling subroutine has to provide further

initial conditions in addition to the provided constraints

(5b).

If the model equations have solution invariants, e.g., en-

ergy conservation or mass conservation, then it is of-

ten desirable to preserve these solution invariants ex-

plicitly because in general the numerical solution of the

model equations does not satisfy the solution invariants.

QUALIDAES is able to preserve solution invariants if

they are provided by the user as additional equations in

the constraints (5b).

Furthermore, QUALIDAES offers the possibility to deter-

mine a continuous output. This is helpful for example for

an event detection or a visualization in the post process-

ing.

If QUALIDAES is used in the MODELICA-framework

then this requires a representation of the MODELICA

model equation in quasi-linear form. For the most

real applications, the model equations arise naturally in

quasi-linear form. But unfortunately, in the MODELICA-

framework this quasi-linear structure is not obviously re-

flected. Therefore, it is necessary to develop strategies

to represent MODELICA model equations in quasi-linear

form or to reformulate, e.g., by extension into this struc-

ture, as illustrated in the next section.

4 Quasi-Linear Model Equations

As already mentioned, MODELICA does not support

quasi-linear equations directly, but allows the user to

write arbitrary expressions to describe the dynamic be-

havior of the model. It is the responsibility of the un-

derlying interpreter to transform the expressions into an

equivalent suitable form (or, arguably, report an error if

no such transformation can be found). Therefore, to use

MODELICA as the model language for QUALIDAES, we

have to provide said transformation.

In the following section we will resort to the following

style of notation:

A language will be defined in a simple BNF-form:

Nonterminals are expressed with the same small letters

as meta-variables of the corresponding syntactic sort (e.g.

we will use e to denote both the set of terms and a vari-

able from that set). Productions are defined by ::= and

Internalized State-Selection: Generation and Integration of Quasi-Linear Differential-Algebraic Equations

102 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511899

alternatives are distinguished via |. The context will al-

low for easy distinction between both uses. Multiple

variables of the same syntactic sort are introduced before

they are used.

We will introduce the signature of functions in a black-

board style using × for Cartesian products and → to dis-

tinguish domain and co-domain. Partial functions will be

introduced using the same style but with a →֒. Addition-

ally, we consider partial functions as sets of tuples that

can be augmented using the 7→ operator (i.e. p∪{1 7→ 2}
is the partial function p augmented by mapping 1 to 2.

The domain of a partial function p is written dom(p).

Functions over elements of a language will be defined

using a freely adapted denotational style: JeKX denotes

the function X applied to e. All these (recursive) func-

tions are defined using pattern matching on their argu-

ments: Je1 + e2KX means the application of X to terms

formed by the addition of two (possible distinct) terms.

Meta-variables are bound in the patterns or correspond-

ing where-clauses.

4.1 Input Language

As input we consider a small excerpt from the MODEL-

ICA abstract syntax of terms:

e ::= e+ e | e× e

| ui | DER(ui)

| τ | c

Terms e (alternative variables are d,c) consist of addition,

multiplication, numbered unknowns (ui) a MODELICA-

style derivative-operator DER(), the simulation time τ
and constants c ⊆ R.

4.2 Quasi-Linear Language

A quasi-linear equation ql (or q̂l, q̃l) forms one row of the

aforementioned E(x, t). Without loss of generality, we

assume that all ql are of the form ei(x, t)ẋ+ ki(x, t) = 0.

We also assume that all our system consists of n un-

knowns u1 . . .un = x. Then, a quasi-linear equation can

be represented as a tuple of a constant term e and a par-

tial function γ (alternatively β ,α), mapping derivatives

to their respective coefficients:

ql ⊆ γ × e

where γ : u →֒ e

An ordered set QL= {ql1 . . .qln} (Q̃L when an alterna-

tive is needed) of n quasi-linear equations forms a system.

Such a system is equivalent to the leading matrix E aug-

mented with its right-hand-side k in the sense that each

quasi-linear equation defines a row of E|k:

QL = {ql1 . . .qln}
∧
= E|k

ei j(ẋ,x, t)
∧
= ci j · ẋ

where

qli = 〈γi,ei〉

ci j =

{
Jγi(u j),x, tKe when u j ∈ dom(γi)

0 otherwise

ki(x, t) = Jei,x, tKe

In this definition, the helper function J. . .Ke is a

straightforward interpretation of terms:

JKe : e×R
n ×R →֒ R

Je1 × e2,x, tKe
∧
= Je1,x, tKeJe2,x, tKe

Je1 + e2,x, tKe
∧
= Je1,x, tKe + Je2,x, tKe

Jτ,x, tKe
∧
= t

Jui,x, tKe
∧
= xi

Jc,x, tKe
∧
= c

Note, that the interpretation function is undefined for

derivative-terms. However, this does not cause any prob-

lems in our application, as any derivatives will be re-

moved by our transformation (the matrix E does not con-

tain any derivatives).

4.3 Transformation

With the above definitions, the remaining problem is how

to transform a general MODELICA-style equation into a

quasi-linear form. Naturally, there is a trivial transfor-

mation that replaces all derivative with simple identities

of the form DER(ui) = u j. Since these identities are triv-

ially quasi-linear, this does not violate the requirements

for the output of the transformation. However, the result-

ing system would be unnecessary large and not leverage

the structure of the system for efficient simulation. In

fact, QUALIDAES would have to solve the whole nonlin-

ear system as hidden constraints. While the result (if it

can be computed) might be (numerically) exact, this is

certainly not the best or even an acceptable strategy.

Instead, we are going to keep the amount of additional

identities to a minimum. We capture the identities in a

partial function ι (also: κ,λ):

ι : ui →֒ u j

The transformation J. . .Kqlt itself is again defined in a

denotational style using pattern-matching:

JKqlt : e×N× ι → ql×N× ι

The simplest cases are the simulation time, constants

and unknowns. In these cases, the result is the quasi-

linear equation with an empty set of coefficients, while

Session 2C: Simulation Techniques

DOI
10.3384/ecp1511899

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

103

the size of the system and the identities remain un-

changed:

Jτ,n, ιKqlt
∧
= 〈〈 /0,τ〉,n, ι〉

Jc,n, ιKqlt
∧
= 〈〈 /0,c〉,n, ι〉

Jui,n, ιKqlt
∧
= 〈〈 /0,ui〉,n, ι〉

For the summation of quasi-linear equations, we need

a way to sum their coefficients in a way that maintains

the interpretation of the coefficients as products of deriva-

tives with terms. Hence, the sum of two coefficients is

either undefined for a given unknown (when both sum-

mands are undefined for the unknown), the result of look-

ing up that unknown in one of the coefficients (when it

is only defined in one of them, mimicking addition with

zero) or the sum of both right-hand sides (when it is de-

fined in both coefficients):

(γ ⊎β)(ui)
∧
=

γ(ui)+β (ui) when ui ∈ dom(γ)∩dom(β)

γ(ui) when ui ∈ dom(γ)\dom(β)

β (ui) when ui ∈ dom(β)\dom(γ)

undefined otherwise

With this definition, the transformation of the addition-

term is the simple in-order transformation of both sum-

mands, followed by the construction of the quasi-linear

sum:

Je1 + e2,n, ιKqlt
∧
= 〈γ ⊎β ,d + c,〉, l,λ 〉

where

〈〈γ ,d〉,m,κ〉 = Je1,n, ιKqlt

〈〈β ,c〉, l,λ 〉 = Je2,m,κKqlt

In order to transform a derivative, we have to check,

whether said derivative is already identified with an (arti-

ficial) variable. In such a case, the derivative is replaced

with the corresponding unknown and put into the right-

hand-side term. If the derivative is not yet identified with

another unknown, it yields a new coefficient:

JDER(ui),n, ιKqlt
∧
=

{
〈〈 /0,uι(i)〉,n, ι〉 when i ∈ dom(ι)

〈〈{ui → 1},0〉,n, ι〉 when i /∈ dom(ι)

The transformation of multiplication-terms requires

another auxiliary function, J. . .K×:

Je1 × e2,n, ιKqlt
∧
= Jqlt,e2,m,κK×

where

〈qlt,e2,m,κ〉 = Je1,n, ιKqlt

J. . .K× allows to multiply a quasi-linear equation di-

rectly with a term. Again, it is defined in a denotational

style using pattern-matching:

JK× : ql× e×N× ι → ql×N× ι

Multiplication with non-derivative terms is again

straight-forward (with ⊗ being the multiplicative equiva-

lent to ⊎ defined above).

J〈γ ,e〉,τ,n, ιK×
∧
= 〈〈γ ⊗ τ,e× τ〉,n, ι〉

J〈γ ,e〉,c,n, ιK×
∧
= 〈〈γ ⊗ c,e× τ〉,n, ι〉

J〈γ,e〉,ui,n, ιK×
∧
= 〈〈γ ⊗ui,e× τ〉,n, ι〉

An addition-term can be multiplied with a quasi-linear

equation by multiplying its summands and summing up

the result:

Jql,e1 + e2,n, ιK×
∧
= 〈〈γ ⊎β ,e+d〉, l,λ 〉

where

〈〈γ,e〉,m,κ〉 = Jql,e1,n, ιK×

〈〈β ,e〉, l,λ 〉 = Jql,e2,m,κK×

Multiplication with a derivative is uncomplicated,

when there is no coefficient mapped to a derivative in

the quasi-linear equation:

J〈 /0,e〉,DER(ui),n, ιK×
∧
= 〈〈{ui → e},0〉,n, ι〉

If the derivative is identified with another unknown,

multiplication is defined recursively by multiplication

with that unknown. In the general case, however, the

multiplication with a derivative requires the addition of a

new identification:

Jql,DER(ui),n, ιK×
∧
=

{
Jql, ι(ui),n, ιK× when ui ∈ dom(ι)

Jql,um,m, ι ∪{ui → um}K× otherwise

where m = n+1

The final case is the multiplication of multiplication-

terms. In that case, we can simply resort to the distribu-

tive property of multiplication:

Jql,e1 × e2,n, ιK×
∧
= 〈q̃l, l,λ 〉

where

〈q̂l,m,κ〉 = Jql,e1,n, ιK×

〈q̃l, l,λ 〉 = Jq̂l,e2,m,κK×

This transformation obviously deals just with a tiny

fraction of the syntactically valid MODELICA equations

and it is also quite obvious (at least to the experienced

developer), that a lot of work needs to be put into a

full coverage. However, adding more operators or syn-

tactic variants does not add anything more insight into

the discussed principles. On the contrary, if we would

add an operation like MODELICA’s power-operator ∧,

we would have to expand our transformation with a cor-

responding JK∧ routine. It should be quite clear that

just a few such additions would make the transforma-

tion process unreadable. Hence, we conjecture (but do

not prove for practical reasons) that all MODELICA equa-

tions can, in principle, be transformed into an equivalent

quasi-linear form.

Internalized State-Selection: Generation and Integration of Quasi-Linear Differential-Algebraic Equations

104 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511899

4.4 Derivatives and Hidden Constraints

The regularization (or index-reduction) of a DAE re-

quires the (arbitrary-order) differentiation of equations

with respect to the independent variable. For a quasi-

linear representation however, the coefficients may only

be multiplied with first-order derivatives of the system’s

unknowns. To maintain that invariant, it is necessary to

break down an arbitrary-order differentiation into several

steps of first-order differentiation and transformation into

quasi-linear form.

The (first-order) derivative of a quasi-linear equation

is computed by J. . .K∇ql. It takes a quasi-linear equation,

system size and identities and yields a term (which may

contain applications of the DER()-operator) and a new

system size m and identities κ:

JK∇ql : ql×N× ι → e×N× ι

J〈γ,e〉,n, ιK∇ql
∧
= 〈d + JeK∇e,m,κ〉

where

〈d,m,κ〉 = Jγ,n, ιK∇γ

The total derivative of the set of coefficients J. . .K∇γ

is the sum of the total derivative of every coefficient. A

coefficient can be differentiated by interpreting it as the

product of the derivative with a term. To avoid generat-

ing a higher-order derivative, the coefficient’s derivative

has to be identified with a new or existing variable:

JK∇γ : γ ×N× ι → e×N× ι

J /0,n, ιK∇γ
∧
= 〈0,n, ι〉

J{ui 7→ e}∪ γ,n, ιK∇γ
∧
= 〈c,m+1,κ ∪{ui 7→ um+1}〉

where

c = JeK∇e ×um+1 + e×DER(um+1)+d

〈d,m,κ〉 = Jγ,n, ιK∇γ

Calculating the total derivative of a (derivative-free)

term is a straightforward implementation of calculus:

JK∇e : e →֒ e

Je1 + e2K∇e
∧
= Je1K∇e + Je2K∇e

Je1 × e2K∇e
∧
= Je1K∇e × e2 + e1 × Je2K∇e

JcK∇e
∧
= 0

JτK∇e
∧
= 1

JuiK∇e
∧
= DER(ui)

Again, it comes in handy that our term language is so

small. However, the above function can be generalized

for more complicated input languages using techniques

like automatic differentiation (Höger (2013)). Hence we

conjecture that differentiation is possible for all quasi-

linear equations derived from all MODELICA equations.

In order to calculate the constraints of a regularized

DAE we consider the output of the regularization as a

function c : ql → N from quasi-linear equations to the

amount of desired differentiations. Given such a func-

tion, a system of quasi-linear equations QL can be ex-

panded by regularization J. . .Kreg:

JKreg : (ql → N)×QL×N× ι → QL×N× ι

Jc, /0,n, ιKreg
∧
= 〈 /0,n, ι〉

Jc,{ql}∪QL,n, ιKreg
∧
= 〈{ql0 . . .qlk}∪ Q̃L,m,κ〉

where

k = c(ql)

〈ql0,n0, ι0〉 = 〈ql,n, ι〉

〈qli+1,ni+1, ιi+1〉 = JJqli,ni, ιiK∇qlKqlt

〈Q̃L,m,κ〉 = Jc,QL,nk, ιkKreg

After this process, the resulting augmented matrix ˜E|k
(including rows from identities) is probably non-squared.

To reconcile this property and gather all hidden con-

straints, we attempt to eliminate superfluous rows from

the matrix e.g. by symbolic Gaussian elimination.This

reconcilation depends on the symbolic equivalence of

equation terms. While this is possible (e.g. by us-

ing a suitable computer algebra system) for our small

term-language, equivalence is of course undecidable for

Turing-complete terms (as they are used in MODELICA).

Hence, the process is not practically applicable to every

model. We conjecture however, that such a limitation

exists for every symbolic processing of models.

If this process succeeds, all the removed rows have no

coefficients and are thus hidden constraints.

4.5 Example

To support our claim that JKqlt is not a trivial and hence

useless transformation, we resort to example 2.1. After

setting m = L = 1 for simplification, it can be expressed

in our simple term language (extended with subtraction

for brevity) as:

DER(u1)−u3

DER(u2)−u4

u1 ×u1 +u2 ×u2 −1

DER(u3)+2×u1 ×u5

DER(u4)+2×u2 ×u5 +g

The first and second equation are obvious identities in

the sense of ι . Hence, our transformation can be jump-

started (if we omit this jump-start, the identities would be

copied later on) using these identities and yields 3 quasi-

linear equations and said identities:

ql1 =〈 /0,u1 ×u1 +u2 ×u2 −1〉

ql2 =〈{u3 7→ 1},2×u1 ×u5〉

ql3 =〈{u4 7→ 1},2×u2 ×u5 +g〉

ι ={u1 7→ u3,u2 7→ u4}

Session 2C: Simulation Techniques

DOI
10.3384/ecp1511899

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

105

The output of a regularization step will ask us to add the

first and second derivative of equation ql1 to the system

(it will also ask us to add the first derivative of the iden-

tities, but this can be ignored since identities and their

derivatives are inlined implicitly). Doing so yields:

ql4 =〈 /0,u1 ×u3 +u2 ×u4〉

ql5 =〈{u3 7→ u1,u4 7→ u2},u3 ×u3 +u4 ×u4〉

No additional identities are required for this simple ex-

ample. Equations ql1 and ql4 are arguably constraints

(although ql1 is not hidden). The resulting augmented

coefficient matrix can be seen below:

u3 0

u4 0

1 2×u1 ×u5

1 2×u2 ×u5 +g

u1 u2 u3 ×u3 +u4 ×u4

The last row can be eliminated by subtracting the third

and fourth rows (multiplied with the corresponding coef-

ficient), which yields the third hidden constraint:

u3×u3+u4×u4−2×u1×u1×u5−2×u2×u2×u5+g

This is precisely the term we would expect from trans-

lating equation (4g). The resulting system E,k and h

can be fed into QUALIDAES and (given a consistent ini-

tial point) integrated over time without any further state-

selection.

5 Conclusions

In this article we have discussed the efficient and robust

numerical simulation of dynamical systems that are mod-

eled with MODELICA. We have presented a regulariza-

tion method for quasi-linear DAEs that is based on an

over-determined system formulation that is obtained by

adding all hidden constraints explicitly to the original

model equation. The over-determined system formula-

tion can then directly be integrated using the software

package QUALIDAES. The great advantage of the direct

discretization of the over-determined formulation is the

fact that it is not necessary to determine a dynamic (state)

selector outside of the solver QUALIDAES since this is

achieved automatically within the separated treatment of

(8) by its numerical solution, described above. Perform-

ing the state selection within the numerical integrator

also allows us to switch between different state selections

and also opens the door to handle structure varying sys-

tem models Pepper et al. (2011). Furthermore, the num-

ber of unknowns in the DAE is not increased. A further

advantage of an over-determined regularization with re-

spect to the numerical integration is the possibility to add

solution invariants, e.g., mass, impulse or energy conser-

vation laws, to the constraints, which often stabilizes nu-

merical integration.

Nevertheless, QUALIDAES requires a quasi-linear repre-

sentation of the model equations. As we have shown,

MODELICA-style equations can be transformed into

quasi-linear form in a non-trivial way. This transforma-

tion preserves enough symbolic information about the

equations to allow for the description of the hidden con-

straints. On the other hand, non-symbolic (i.e. algorith-

mic) parts can still be dealt with due to the introduction

of identities with new variables.

5.1 Future Work

Although clearly necessary, the expansion of the input

language of the quasi-linear transformation seems to be

merely technically challenging. There are however some

areas of future research that should be considered:

First, the search for a consistent initial point is a well-

known challenging problem. It remains an open ques-

tion, whether the quasi-linear transformation could pro-

vide any help in that area.

Furthermore, the transformations are currently imple-

mented in a straightforward manner. Hence, the outcome

might be non-optimal for practical applications (e.g. the

size of the derived expressions might harm the simula-

tion performance). It could be interesting to search for

variants of the transformation that maintains practically

useful properties (e.g. minimal tree size, minimal identi-

ties added).

Finally, we have already shown that the regularization of

a structurally varying DAE can be implemented in an effi-

cient, dynamic algorithm (see Höger (2014)). This is, ob-

viously, of little value when the application of its results

remains a non-dynamic monolithic algorithm. Hence

any representation, but especially the quasi-linear form

(since it is well-suited for structurally varying systems)

should be enhanced with a dynamic regularization that

preserves as much information from earlier modes as pos-

sible.

Acknowledgments

This work has been supported by the European Research

Council through Advanced Grant MODSIMCONMP

and by the German Research Foundation (Deutsche

Forschungsgemeinschaft DFG) within the project "Au-

tomatische Modellierung und Simulation von technis-

chen Systemen mit Unsicherheiten" AMSUN.

References

R. Altmeyer and A. Steinbrecher. Regularization and numeri-

cal simulation of dynamical systems modeled with Model-

Internalized State-Selection: Generation and Integration of Quasi-Linear Differential-Algebraic Equations

106 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp1511899

ica. Preprint 29-2013, Institut für Mathematik, TU Berlin,

2013.

K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical

Solution of Initial-Value Problems in Differential Algebraic

Equations, volume 14 of Classics in Applied Mathematics.

SIAM, Philadelphia, PA, 1996.

P. Deuflhard. Newton methods for nonlinear problems. Affine

invariance and adaptive algorithms, volume 35 of Springer

Series in Computational Mathematics. Springer-Verlag,

Berlin, 2004.

C.W. Gear. Differential-algebraic equation index transforma-

tions. SIAM Journal on Scientific and Statistic Computing,

9:39–47, 1988.

E. Griepentrog and R. März. Differential-Algebraic Equations

and Their Numerical Treatment, volume 88 of Teubner-

Texte zur Mathematik. BSB B.G.Teubner Verlagsge-

sellschaft, Leipzig, 1986.

E. Hairer and G. Wanner. Solving Ordinary Differential

Equations II - Stiff and Differential-Algebraic Problems.

Springer-Verlag, Berlin, Germany, 2nd edition, 1996.

D.J. Higham and N.J. Higham. MATLAB Guide. Society for

Industrial and Applied Mathematics (SIAM), Philadelphia,

PA, second edition, 2005. ISBN 0-89871-578-4.

C. Höger. Operational semantics for a modular equation lan-

guage. AVICPS 2013, page 5, 2013.

C. Höger. Dynamic structural analysis for daes. In Proceedings

of the 2014 Summer Simulation Multiconference, page 12.

Society for Computer Simulation International, 2014.

P. Kunkel and V. Mehrmann. Index reduction for differential-

algebraic equations by minimal extension. Zeitschrift für

Angewandte Mathematik und Mechanik, 84(9):579–597,

2004.

P. Kunkel and V. Mehrmann. Differential-Algebraic Equations.

Analysis and Numerical Solution. EMS Publishing House,

Zürich, Switzerland, 2006.

S. Mattsson and G. Söderlind. Index reduction in differential-

algebraic equations using dummy derivatives. SIAM Jour-

nal on Scientific and Statistic Computing, 14:677–692,

1993.

C.C. Pantelides. The consistent initialization of differential-

algebraic systems. SIAM Journal on Scientific and Statistic

Computing, 9:213–231, 1988.

P. Pepper, A. Mehlhase, Ch. Höger, and L. Scholz. A composi-

tional semantics for Modelica-style variable-structure mod-

eling. In P. Fritzson F.E. Cellier, D. Broman and E.A. Lee,

editors, 4th International Workshop on Equation-Based

Object-oriented Modeling Languages and Tools (EOOLT

2011), number 56 in Linköping Electronic Conference Pro-

ceedings, pages 45–54, Zurich, Switzerland, 2011. Septem-

ber 5, 2011.

J. Pryce. A simple structural analysis method for DAEs. BIT

Numerical Mathematics, 41:364–394, 2001.

L. Scholz and A. Steinbrecher. A combined structural-

algebraic approach for the regularization of coupled systems

of DAEs. Preprint 30-2013, Institut für Mathematik, TU

Berlin, 2013.

L. Scholz and A. Steinbrecher. Efficient numerical integra-

tion of dynamical systems based on structural-algebraic

regularization avoiding state selection. In K.-E. Arzen

H. Tummescheit, editor, Proceedings of the 10th Interna-

tional Modelica Conference, March 10-12, 2014, Lund,

Sweden, number 96 in Linköping Electronic Conference

Proceedings, pages 1171–1178. Modelica Association and

Linköping University Electronic Press, 2014.

A. Steinbrecher. Numerical Solution of Quasi-Linear

Differential-Algebraic Equations and Industrial Simulation

of Multibody Systems. PhD thesis, Technische Universität

Berlin, 2006.

Session 2C: Simulation Techniques

DOI
10.3384/ecp1511899

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

107

