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Abstract 

Building complex systems from models that have been 

developed separately without modifying existing code 

is a challenging task faced on a regular basis in 

multiple contexts including design verification. To 

address this issue an approach has been developed for 

automating dynamic system model composition by 

defining the minimum set of information that is 

necessary to the composition process. In this paper a 

design and implementation of this approach for 

standard Modelica is presented in the context of an 

application case study – the verification of a new 

design for spoiler activation against requirements.  

Keywords: bindings, requirements, model composition, 

design verification 

 

1 Introduction 

Complex cyber-physical systems within safety critical 

application domains such as avionics need to take a lot 

of standard and specifications into account (Kepurch, 

2010). For complex system, design verification is often 

challenging due to large number of requirements to be 

tested.  For such systems an automated approach for 

connecting together system and requirement models is 

necessary. 

Design verification takes place in system 

development steps starting from early concept 

evaluation to detailed system component design. The 

purpose of the presented approach to support design 

verification activities
1
 by automating the task of 

simulation model composition. 

This paper builds upon an approach that enables 

automated composition of models by expressing the 

minimum of information necessary to compose the 

models automatically (Schamai, 2013).  In our case 

study, we show how binding specification can be 

defined using standard Modelica language (Modelica 

Association, 2012; Fritzson 2014), and show how the 

algorithm for automated binding generation can be 

implemented in OpenModelica. In contrast to an 

                                                
1
 Note, since this contribution focuses on implementing of 

approach that is based on defining interfaces that 

models have to implement, this approach enables the 

integration and/or composition of models without the 

need for modifying those models. This means that 

requirement models and system models can be 

developed separately and existing models can be used 

without any modifications. 

Explicitly exposing and grouping the information 

that is needed to interconnect the models will reduce 

analysis work. For example, when several requirements 

need the same information the same binding 

specification can be reused. 

Additionally, automated generation of binding 

expressions reduces the risk of introducing errors and 

reduces modeling effort, in particular in models with 

highly interrelated components and/or complex binding 

expressions.  

In the case study presented here we wish to verify a 

particular system design for spoiler activation, 

represented by a Modelica model, against requirements 

that are formalized in Modelica using the Modelica 

Requirements Library (Otter et al, 2014). 

This paper is organized as follows: Section 2 

presents the case study used in the paper. Section 3 

describes the proposed syntax for defining bindings 

and illustrates it on the case study. Section 4 discusses 

the implementation of the algorithm for binding 

generation, and finally Section 5 summarizes the 

results presented in the paper. 

2 Case Study Description 

The selected case study is the design verification of the 

secondary flight system of an aircraft. 

The secondary flight control system allows 

modifying the wing geometry, and consequently the 

aerodynamic behaviour of the aircraft, during the 

different flight phases and notably at take-off and 

landing. It is composed of spoilers, flaps and slats. 
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Figure 1. Flight Control System 

On the Airbus A350 XWB, some new functions have 

been attributed to the SFCS system  (Strüber, 2014): 

• DFS (Differential Flap Setting): possibility of a 

differential inboard/outboard deflection for loads 

and drag control 

• VC (Variable Camber): Uniform flaps deployment 

in cruise for drag control 

• ADHF (Adaptive Dropped Hinge Flaps): the gaps 

between the flaps and the spoilers are optimized to 

reduce turbulences at high and medium speed. 

These new functions induced a new architecture of the 

system and new control logics which both need to be 

tested. 

 

Figure 2. ADHF configurations 

 

In this new architecture, the actuation of the flaps is 

done by an actuation chain made of: 

• Hydraulic motors 

• Electrical motors 

• Gears 

The actuation of the spoilers is done via actuators 

being servo controlled actuators (SCA) or Electric 

Backup Hydraulic Actuators (EBHA). In order to 

simulate the system behaviour a Modelica model has 

been developed. The inputs of the system are flap 

commands, aerodynamic loads on surfaces (flaps and 

spoilers), and failures of some components. The model 

essentially uses blocks from the Modelica Standard 

Library except blocks modeling hydraulic components 

which were developed specially for this application. 

For confidentiality reasons, the content of the model 

cannot be disclosed. 

2.1 Requirements Formalization  

A system is developed based on requirements which 

are captured up-front typically using natural language 

(Hull, 2005). To test requirements they need to be 

formalized, i.e., they need to be translated into a 

machine readable form. In our case study we use the 

new Modelica Requirements Library (Otter et al, 2014) 

developed in the MODRIO project and the extension 

for calling blocks as functions implemented in 

OpenModelica (Buffoni and Fritzson, 2014).  

In the following we show some examples of natural 

language requirements and their corresponding 

versions in Modelica. Each requirement is modeled 

such that it explicitly specifies the inputs it requires for 

evaluation. These inputs will need to be provided by 

the system or test scenario models. Further, each 

requirement has an explicit status attribute which is 

the requirement verdict that can take the values 

undecided, violated or satisfied.  

Req.001 “The torque of any ADGB electrical motor 

shall not be superior to 20 N.m for more than 1 sec.”  

This is translated into the following Modelica 

model.  

 
model R1  
  … 
  input Torque ADGBtorque = 0; 
  constant Torque maxTorque = 20; 
  constant Duration maxDurationForTorqueOvershoot = 1; 
 

  Property status(start = Property.Undecided, fixed = true); 
 

  Modelica_Requirements.ChecksInFixedWindow.MaxDuration ma

xDuration(durationMax=maxDurationForTorqueOvershoot,check=c

ondition.y); 
  Modelica_Requirements.Sources.BooleanExpression condition(y=

ADGBtorque >= maxTorque); 
equation  
  status = maxDuration.y; 
  connect(condition.y, maxDuration.condition); 
end R1; 
 

The R1 model has one input ADGBtorque. It is the 

actual torque of any electrical motor. The value will 

need to be provided the R1 instance by the system 

model when testing this requirement using simulations.   

 

Figure 3. R1 Modelica model 

 

Figure 3 shows the graphical view of the R1 model. It 

has two components: Condition and maxDuration 

from the Modelica Requirements Library. The 

condition component outputs true if the actual 

torque of the motor is greater than the defined 

threshold and false otherwise.  

maxDuration 

check 

condition.y 

maxOvershoot s 

<= 
condition 

ADGBtorque >= maxTorque 

7 spoilers 
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This output is used as input for the maxDuration 

component that outputs the status of the requirement 

violation. At the very beginning, as long as the 

condition is false it outputs undecided. This is 

because at this point the requirement was not yet 

evaluated. As soon as the condition returns true the 

maxDuration component will return violated if the 

condition was true for longer than 1 sec. or 

satisfied otherwise.   

 

Figure 4. R1 test results 

 

Req.002 “The time of any action of flaps actuation 

(extension/retraction) shall be less than 50 sec.”.  

 
model R2  
  … 

  input Boolean isFlapsActuationAction = false; 
  constant Duration maxDuration = 50; 
 

  Property status(start = Property.Undecided, fixed = true); 
 

  Modelica_Requirements.ChecksInFixedWindow.MaxDuration ma

xDuration1(durationMax=maxDuration,check=condition.y); 
  Modelica_Requirements.Sources.BooleanExpression condition(y=i

sFlapsActuationAction); 
equation  
  connect(condition.y, maxDuration1.condition); 
  status = maxDuration1.y; 
end R2; 

 

 

Figure 5. Req 002 Modelica model  

 

The input to this model is 

isFlapsActuationAction. It is a Boolean type 

value to be provided by the system model when testing 

this requirement using simulations. Note that at this 

point it is not clear how to determine whether the flaps 

actuation action takes place. 

In fact there may be several ways of accessing this 

information of one system design model, and there 

may be several system design alternative models. It is 

the task of the person who develops the design models 

to specify how this data can be accessed. Section 3 

discusses how this can be done.  

Figure 5 shows the graphical view of the R2 model. 

It includes two components: condition and 

maxDuration which are instances of models from the 

Modelica Requirements Library. The condition 

component outputs true as long as the action flaps 

actuation action takes place (i.e., extension or 

retraction) and false otherwise. This output is used as 

input for the maxDuration component that outputs 

the status of the requirement violation.  

At the very beginning, as long as the condition is 

false it outputs undecided. This is because at this 

point the requirement was not yet evaluated at all. As 

soon as the condition the flaps actuation action starts, 

the maxDuration component will measure the time. It  

returns satisfied  if the action took less than 50 sec. 

and violated otherwise.   

 

Figure 6. Req 002 test results 

 

Req.003 “The flap angle shall be comprised in the 

range [-5°;35°]”.  

 
model R3 
  … 

  input Angle flapAngle; 
 

  Property status(start = Property.Undecided, fixed = true); 
 

  Modelica_Requirements.LogicalBlocks.WithinBand band1(u_max

=35, u_min=-5, u=flapAngle); 
equation  
  if (not band1.y) then 
    status = Property.Violated; 
  else 
    status = Property.Satisfied; 
  end if; 
end R3; 
 

The input for the model R3 is the flapAngle. Since 

there will be several flaps this requirement will need to 

be checked (i.e., instantiated) for each flap. The model 

WithinBand from the Modelica Requirements library 

is used for computing the verdict for this requirement.  

maxDuration1 

check 

condition.y 

maxDuration s 

<= condition 

isFlapsActuationAction 
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Figure 7. Req 003 Modelica model 

 

The status can be evaluated at any time right from the 

beginning, i.e., there will be no time instant at which 

the status is undecided.  

 

Figure 8. Req 003 test results 

 

Req.004 “When the flap is moving, the distance 

(gap) between a flap and its spoiler shall be less than 

10 cm”.   

Req.005 “When the flap is not moving, the distance 

(gap) between a flap and its spoiler shall be less than 3 

cm”.  

The formalization of the requirements Req.004 and 

005  is similar to Req.006 (see below).  

 

Req.006 “The effort between a flap and its spoiler 

shall be less than 1000N”.  

 
model R6  

  … 

  input Force forceBetweenFlatAndItsSpoiler=0; 
  constant Force maxAllowedForce=1000; 
 

  Property status(start = Property.Undecided, fixed = true); 
 

  Modelica_Requirements.LogicalBlocks.LessThreshold l(threshold

=maxAllowedForce, u = forceBetweenFlatAndItsSpoiler); 
 

equation  
  if not l.y then 
    status = Property.Violated; 
  else 
    status = Property.Satisfied; 
  end if; 
end R6; 

 

Figure 9. Req 006 Modelica model 

 

 

Figure 10. Req 006 test results 

 

Req.015 “The high lift system shall be able to hold 

the high lift surfaces in their current position: 

• Under all load conditions; 

• Under all relevant environmental conditions; 

• After total loss of electric and hydraulic power 

(permanent or transient).  

 
model Requirement_15  
… 
 input Boolean hydraulicFailure; 
 input Boolean electricalFailure; 
 input Angle outboardValue; 
 input Angle inboardValue; 
 

parameter Real minDerivative = 0.01 "Values in degrees/s"; 
Property status(start = Property.Undecided, fixed = true); 
 

Modelica_Requirements.ChecksInFixedWindow.During during1(ch

eck=not (flapsMoving.y)); 
Modelica_Requirements.Sources.BooleanExpression totalFailure(y

= hydraulicFailure and electricalFailure); 
 Modelica_Requirements.Sources.BooleanExpression flapsMoving(

y=abs(der( SI.Conversions.to_deg(outboardValue))) > minDerivativ

e or abs(der( SI.Conversions.to_deg(inboardValue))) > minDerivati

ve); 

 
equation  
status = during1.y; 
 

end Requirement_15; 
 

Req.016 “Transients in normal system operations 

and in case of failure shall not cause excessive loads to 

components.” 

 

This requirement is quite challenging to formalize 

since the conditions of excessive loads for each 

component must be defined. 

The following formalization of the requirement uses 

arrays to gather variables coming from the different 

instances of the different components (ADGBs, flaps, 

PCU brakes). The binding mechanism will feed these 

inputs with the corresponding variables depending on 

the number of instances present in the model. The 

PropertyAnd block synthesizes the values of the 

different statuses with a 3-valued “and” logic. 

band1 

35 

-5 

maxAllow edForce 

l 
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model Requirement_16 
… 
  input Angle flapSpeed[:]; //left and right, inboard and outboard 
  input Real ADGB_MotorTorque[:]; //left and right 
  input Real ADGB_BrakeTorque[:]; //left and right 
  input Real PCU_BrakeTorque[:]; //green and yellow brakes 
 

  parameter Torque maxMotorTorque = 20; 
  parameter Real maxDerivative = 2; 
  parameter Torque maxADGB_BrakeTorque = 1e6; 
  parameter Torque maxPCU_BrakeTorque = 1e6; 
 

  Property status(start = Property.Undecided, fixed = true); 
 

  Property ADGB_MotorStatus[size(ADGB_MotorTorque,1)]; 
  Property ADGB_BrakeStatus[size(ADGB_BrakeTorque,1)]; 
  Property PCU_BrakeStatus[size(PCU_BrakeTorque, 1)]; 
  Property flapOverspeedStatus[size(flapSpeed, 1)]; 
 

  Modelica_Requirements.LogicalBlocks.PropertyAnd andStatus(nu

=size(ADGB_MotorTorque,1)+size(ADGB_BrakeStatus, 1)+size(P

CU_BrakeStatus, 1)+size(flapOverspeedStatus, 1)); 
 

equation  
  andStatus.u = cat(1,ADGB_MotorStatus,ADGB_BrakeStatus,PCU

_BrakeStatus,flapOverspeedStatus); 
  andStatus.y = status; 
 

  for i in 1:size(ADGB_MotorTorque,1) loop 
    if abs(ADGB_MotorTorque[i])>maxMotorTorque then 
      ADGB_MotorStatus[i]=Property.Violated; 
    else 
      ADGB_MotorStatus[i]=Property.Satisfied; 
    end if; 
 end for; 

 
… (same for ADGB_BrakeTorque, PCU_BrakeTorque and 

flapSpeed) 

 

end Requirement_16; 
 

Req.032 “A single electrical failure shall not 

prevent an inboard flaps only movement.” 

 
model Requirement_32 

… 
  input Boolean electricalFailure; 
  input Boolean hydraulicFailure; 
  input Angle outboardValue; 
  input Angle inboardValue; 
  input Integer mode; //mode as computed by SFCC 
 

  Property status(start = Property.Undecided, fixed = true); 
 

  parameter Real minDerivative = 0.01 "Value in rad/s"; 
 

  Boolean inboardMovement = abs(der(inboardValue))>= minDeriv

ative; 
  Boolean outboardMovement = abs(der(outboardValue))>= minDer

ivative; 
 

equation  
  if (mode == 2 and electricalFailure) then //mode 2 = Inboard Differ

ential Flap Setting 
    if (inboardMovement and not  
                               (outboardMovement)) then 
      status = Property.Satisfied; 
    else 
      status = Property.Violated; 

    end if; 
     else 
    status = Property.Undecided; 
  end if; 

end Requirement_32; 
 

Figure 11. Req 032 Modelica Model 

 
In this formalization, a mode computed by the main 

control computer is used to check if a “inboard flap 

only movement” is commanded (mode 2). Other 

implementation could be possible but this one was 

chosen for its simplicity. 

 

 
 

 

Figure 11. Req 032 test results 

 
The last figure shows the results of a real scenario of 

system utilization. The model was excited with a pulse 

entry with 20 degrees of amplitude to move the inboard 

flaps, with no commands given to the outboard flaps. 

Also, during the simulation there are cases of an 

electrical failure distributed in a pulse form. 

The requirement is violated during the simulation of 

the model since the outboard flaps continue to move 

during the electrical failures. This is due to an error in 

the model or in the system design and shall be 

investigated. 

2.2 Verification Scenario Formalization  

Scenarios are defined to stimulate the system in 

different conditions. These scenarios are defined as 

Modelica models providing inputs to the system model 

(flap commands, loads, failures…). 
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Figure 12. Modeling of a scenario 

The scenarios must be defined so that requirements are 

verified (i.e. some scenarios permit the verification of 

the requirement).  For this, a verification table can be 

created. This table defines which scenario should 

permit the verification of which requirements. After 

simulation of all scenarios, the value of the 

requirement will permit to check if the table is correct 

(i.e. to check if the scenarios have triggered the 

verification of the requirements. 

 

 Sc01 Sc02 … Sc15 Sc16 

R001 X X    

R002    X X 

…      

R032    X X 

Table 1. Verification table 

3 Binding definition 

This section describes the syntax for specifying the 

mediators and generating the bindings. In contrast to 

our previous proposals for representing bindings which 

relied either on either the use of an XML 

representation or on extensions to the Modelica 

language, the proposal presented in this paper is fully 

compliant with standard Modelica and relies on records 

to represent the binding information. 

Clients, in this case requirements, require certain 

data. A record for representing the client, specifies the 

information necessary from the client side: 

 
record Client "Client is a model or component that requires a modifi

er (i.e. a binding)" 
     extends Modelica.Icons.Record; 
 

     String id "A qualified name for the client"; 

     String template = "" "A transformation that can be applied to the 

generated binding expression for this client.  If left empty, no transf

ormation will be applied."; 
 

     Boolean isMandatory = false "Defines if the client must to be bo

und or if a binding is optional."; 
    end Client; 

 

A number of fields that are optional have predefined 

values, so that they do not need to be specified if not 

relevant for a specific binding. 

 

Providers make data available to clients. The 

information specified by a provider is defined in the 

record below: 
 

  record Provider "Provider specifies how to access data required for

 clients that are linked to the mediator this provider is used for." 
     extends Modelica.Icons.Record; 
 

     String id "A qualified name for the provider. "; 
     String template = "" "Code snippet with placeholders used for ge

nerating part of binding expression.  If left empty, no transformation

 will be applied."; 

 
  end Provider; 

 

Clients and providers do not know each other a 

priori. In order to relate a set of clients and a set of 

providers, we use the mediators, defined by the record 

below: 
 

  record Mediator "Mediator captures data required for inferring bin

ding expression for referenced clients using referenced providers." 
     extends Modelica.Icons.Record; 
 

    String name = "" "Reflects what is needed by  referenced clients. 

Optional."; 
    String mType = "" "Reflects the type required by  referenced clei

nts. Optional."; 
 

    String template = "" "A transformation that can include calls to fu

nctions that can handle unsorted arrays(e.g., add(:), max(:), toArray(

:), etc.). If left empty, no transformation will be applied."; 
 

    Client clients[:] "List of clients."; 
    Provider providers[:] "List of providers."; 
 

  end Mediator; 

 
A more detailed description of the mediator concept 

can be found in (Schamai, 2013). 

3.1 Binding Specification  

Section 2.1 shows examples of formalized 

requirements. The corresponding requirement models 

from require the following data:  

• Current distance between flap and its spoiler (for 

R4.distanceBetweenFlapAndItsSpoiler and R5. 

distanceFlapSpoiler) 

• Current flap angle (for R3.flapAngle) 

• Current force between flap and its spoiler (for 

R6.forceBetweenFlapAndItsSpoiler) 
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• Current torque of electrical motor 

(R1.ADGBtorque) 

• Flap is moving (for R4.isFlapMoving and 

R5.isFlapMoving) 
 

The system model determines which of the 

requirements will be tested and how they will be 

combined with scenario models. Furthermore, there 

might be requirements which are repeatedly imposed 

on system parts of the same kind that exist inside the 

system model (e.g., there are several flaps in our 

model). 

The purpose of the binding specification is to 

capture the minimum information in order to enable 

creating any combination of the system model and a set 

of requirements such that they will be bound correctly 

in an automated fashion, as well as to enable 

determining how many times a particular requirement 

needs to instantiated. 

In order to do so, the user will now define mediators 

(Schamai et al, 2014). In our example the mediators 

reflect (i.e., contain information about) what data will 

need to be provided by the system model in order to 

enable testing of particular requirements (the clients). 

Consider the mediator M1. It defines that any 

instance of the requirement models 

R4.distanceBetweenFlapAndItsSpoiler and 

R5.distanceFlapSpoiler (clients) have to be 

bound
2
 to some other components in order to retrieve 

the value during simulating. The value can be accessed 

inside the instance of the type Spoilers. 

Spoiler_SC.elastoGap (provider) by using its sub-

component elastoGap.s_rel (captured by the 

template attribute) whereby getPath() will be 

replaced by the instance path of the provider model. 

Other mediators are defined in a similar way. 

 
  record M1 
   import BindingDefinition.*; 
   import Req.*; 
   import SpoilerActuation_v7.*; 
 

   extends Mediator( 
      name = "Current distance between flap and its spoiler", 
      mType = "Modelica.SIunits.Distance", 
      clients = { 
Client(id="R4.distanceBetweenFlapAndItsSpoiler",  
isMandatory=true), 
Client(id="R5.distanceFlapSpoiler",  
isMandatory=true)}, 
      providers = { 
Provider(id="Spoilers.Spoiler_SC.elastoGap",  
template="getPath().elastoGap.s_rel")}); 
  end M1; 
 

record M2 
… 
    extends Mediator( 
      name="Current flap angle", 

                                                
2
 This is indicated by the attribute isMandatory=true 

      mType="Modelica.SIunits.Angle", 
      clients={Client(id="R3.flapAngle", isMandatory=true)}, 
      providers={Provider(id="Flaps.Flap.FlapAngle")}); 
 

end M2; 
 

record M3 
 … 
    extends Mediator( 
      name="Current force between flap and its spoiler", 
      mType="Modelica.SIunits.Force", 
      clients={Client(id="R6.forceBetweenFlatAndItsSpoiler",  
isMandatory=true)}, 
     providers={Provider(id=" Spoilers.Spoiler_SC.elastoGap",  
template="getPath().flange_a")}); 
 

end M3; 
 

record M4 
… 

  extends Mediator( 
    name="Current torque of electrical motor", 
    mType="Modelica.SIunits.Torque", 
    clients={Client(id="R1.ADGBtorque", isMandatory=true)}, 
    providers={ 
Provider(id="Flaps.ActuationChainComponents.MotorModel.flange

_b", template="getPath().tau")}); 
 

end M4; 
 

record M5 
… 
  extends Mediator( 
    name=" Flap is moving", 
    mType="Boolean", 
    clients={ 
      Client(id="R4.isFlapMoving", isMandatory=true), 
      Client(id="R5.isFlapMoving",isMandatory=true)}, 
    providers={ 
      Provider(id="Control.SFCC.Mode", template="getPath() <> 4")

}); 
end M5; 
 

record M6 
… 

    extends Mediator( 
      name="Flaps actuation action is taking place", 
      mType="Boolean", 
      clients={Client(id="R2.isFlapsActuationAction",  
isMandatory=true)}, 
      providers={Provider(id="Control.SFCC.Mode",  
template="getPath() <> 4")}); 
 

end M6; 

4 Binding generation 

Once the bindings are specified a verification  model 

can be created containing the system model and the 

requirements to be verified. 
 

model VeM01 

  import Req.*; 
  import SpoilerActuation_v7.*; 
 System sm_system; 

  R1 r1; R2 r2; R3 r3; R4 r4; R5 r5; R6 r6; 

end VeM01; 
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The system model imports the packages where the 

mediators that can be used in the binding computation 

are defined.  

The OpenModelica API has been extended with a 

call:   inferBindings(systemModel, program); 

The call accepts as arguments the name of 

systemModel as well as the environment (here 

program) with all the loaded classes where it will look 

for the mediator definitions and update the 

systemModel with the binding expressions in the 

form of modifiers.  

 

 

Figure 13 Binding generation in OpenModelica 

 

The algorithm for binding generation is implemented 

in OpenModelica as it is defined in (Schamai et al, 

2014). First an instance tree is built for the model to be 

bound (see Figure 14). This instance tree is represented 

in an internal data structure and all the clients and 

providers are identified by checking whether they 

match the client or provider paths defined in any 

mediators. For instance mediator M4 specifies  only 

one client : Client(id="R1.ADGBtorque", isMandatory=true)  

and therefore ADGBtorque will be marked as a client 

in the instantiation tree. All the mediator data is also 

stored in an internal structure with references to all the 

instances of clients and providers found for each 

mediator. 

 

Once all the internal structures are created, for each 

client the bindings are computed by localizing all the 

providers. If more than one provider is present then a 

template must be defined in the mediator to describe 

how the inputs from different clients must be 

combined.  In mediator M4 we only have one provider 

defined: 
Provider(id="Flaps.ActuationChainComponents.MotorModel.flange

_b", template="getPath().tau")  

As in the model we have two instances of 

MotorModel, right and left, two provider instances will 

be found by the algorithm.  

The getPath() call is replaced with the path of the 

component instance in the environment, in this 

example 
sm_system.flaps.actuationChain.ADGB_Left.motorModel.flange_b 

and sm_system.flaps.actuationChain.ADGB_Right.motorModel 

.flange_b and the template is used to generate a binding 

expression, in this case to point to tau inside each of the 

providers.  
 

 
 

Figure 14 Instantiation tree 

The algorithm figures out the required number of 

requirement instantiations and generates the binding 

expressions. For instance, in this example we need two 

instances of R1, one for each motor and as the model 

used in this use case has four flaps, four instances of 

R4 will be needed. Binding expressions are 

implemented as modifiers that will be applied to the 

components and sub-components of systemModel.  

If the algorithm cannot find a binding for a 

mandatory client, or several binding are possible for 

the same client, the result will be an error message. 

 
Update Bindings 

VeM01 

req1 
sm_system 

ADGBtorque  

… 

… 
… 

(client)  

 

LeftMotorModel RightMotorModel 

Flange_b 

(provider) 
Flange_b 

(provider) 

… 
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Similarly, when several instances of requirements that 

require more than one input need to be generated, user 

involvement may be needed to indicate how to 

correctly pair up the providers.  In future versions of 

the implementation, support for storing and reusing 

user decisions will be implemented through the use of 

annotations.  

For example, regarding the system model specified 

for this case study, the algorithm will generate the 

following binding expressions: 

 
model VeM01 
  import Req.*; 
  import SpoilerActuation_v7.*; 
 

 System sm_system; 

 R1 req_001_0_r1(ADGBtorque = sm_system.flaps.actuationChain. 

ADGB_Left.motorModel.flange_b.tau); 

 R1 req_001_1_r1(ADGBtorque = sm_system.flaps.actuationChain. 

 ADGB_Right.motorModel.flange_b.tau); 
 R2 req_002_r2(isFlapsActuationAction = sm_system.control 

.pRIMandsFCC.Mode <> 4); 
 R3 req_003_0_r3(flapAngle = sm_system.flaps.FlapLI.FlapAngle); 
 R3 req_003_1_r3(flapAngle 

 = sm_system.flaps.FlapLO.FlapAngle); 
 R3 req_003_2_r3(flapAngle = sm_system.flaps.FlapRI.FlapAngle); 
 R3 req_003_3_r3(flapAngle  

= sm_system.flaps.FlapRO.FlapAngle); 
 R4 req_004_0_r4(distanceBetweenFlapAndItsSpoiler =  

sm_system.LISpoiler.elastoGap.elastoGap.s_rel,  

isFlapMoving =  

sm_system.control.pRIMandsFCC.Mode <> 4); 
 R4 req_004_1_r4(distanceBetweenFlapAndItsSpoiler =  

sm_system.LOSpoiler.elastoGap.elastoGap.s_rel,  

isFlapMoving =  

sm_system.control.pRIMandsFCC.Mode <> 4); 
 R4 req_004_2_r4(distanceBetweenFlapAndItsSpoiler = 

 sm_system.RISpoiler.elastoGap.elastoGap.s_rel,  

isFlapMoving =  

sm_system.control.pRIMandsFCC.Mode <> 4); 
 R4 req_004_3_r4(distanceBetweenFlapAndItsSpoiler = 

 sm_system.ROSpoiler.elastoGap.elastoGap.s_rel,  

isFlapMoving =  

sm_system.control.pRIMandsFCC.Mode <> 4); 
 R5 req_005_0_r5(distanceFlapSpoiler = 

 sm_system.LISpoiler.elastoGap.elastoGap.s_rel,  

isFlapMoving =  

sm_system.control.pRIMandsFCC.Mode <> 4); 
 R5 req_005_1_r5(distanceFlapSpoiler =  

sm_system.LOSpoiler.elastoGap.elastoGap.s_rel,  

isFlapMoving =  

sm_system.control.pRIMandsFCC.Mode <> 4); 
 R5 req_005_2_r5(distanceFlapSpoiler =  

sm_system.RISpoiler.elastoGap.elastoGap.s_rel,  

isFlapMoving =  

sm_system.control.pRIMandsFCC.Mode <> 4); 
 R5 req_005_3_r5(distanceFlapSpoiler = 

 sm_system.ROSpoiler.elastoGap.elastoGap.s_rel,  

isFlapMoving =  

sm_system.control.pRIMandsFCC.Mode <> 4); 
end VeM01; 
 

Once the bindings are defined, if we want to modify 

the system design, for instance adding backup 

components to the system or modifying the number of 

flaps, then the bindings can be regenerated with no 

additional effort.  

Moreover, bindings can be used in batch testing to 

automatically generate verification models with 

different scenarios and different requirement subsets. 

This is something that would be difficult to do using 

explicit interfaces.  

5 Conclusion  

In this paper we have presented: 

• A new application of design verification on an 

industrial case study in the field of aeronautics. 

• The use of the new requirement modeling library 

for formalizing the requirements of the case study. 

We have shown that the binding approach is fully 

compatible with the new Modelica Requirements 

library. 

• A modified version of the syntax for representing 

binding specification that is fully compliant with 

standard Modelica syntax, meaning that binding 

specifications can be edited and visualized in any 

Modelica tool. In order to support the binding 

generation, a tool has to simply implement the 

binding algorithm in (Schamai, 2014). 

• An implementation of the binding algorithm in 

OpenModelica 

 

The binding approach does not assume prior 

knowledge of each other by the respective models and 

therefore increases decoupling and allows reuse of 

existing models and libraries. As mediators can be 

defined in several steps this means that different people 

can provide the information necessary to connect the 

models at different stages in the design process. 

Moreover, the binding algorithm is general and can 

be used for binding models in other contexts than 

requirement verification. Furthermore, it enables a 

formal traceability between client and provider models. 

For example, determining which requirements are 

implemented in the system design model at hand can 

be achieved by looking at the bindings for mandatory 

requirement clients. 

The case study is work in progress, but it has 

already allowed to detect a number of relevant issues in 

the model.   

Clearly, the effectiveness of the presented approach 

is jeopardized when bindings are specified such that 

they result into too many ambiguous matches to be 

resolved by user manually. Such situation should be 

detected. Possible resolution could include: Providing 

hints for modifying the binding specifications; 

Enabling user to add more information to the binding 

specification for handling special cases; Or supporting 

the user by providing the list of all possible 

combinations to choose from. More complete results, 

for example, the evaluation of this approach on real 

projects with large number of requirements is still 

subject to future work.  
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