
An Aeronautic Case Study for Requirement Formalization and

Automated Model Composition in Modelica

Wladimir Schamai
1
 Lena Buffoni

3
 Nicolas Albarello

2
 Pablo Fontes De Miranda

2
 Peter Fritzson

3

1
Airbus Group Innovations, Germany wladimir.schamai@airbus.com

2
Airbus Group Innovations, France { pablo.fontes-de-miranda, nicolas.albarello}@airbus.com

3
IDA, Linköping University, Sweden, {lena.buffoni,peter.fritzson}@liu.se

Abstract

Building complex systems from models that have been

developed separately without modifying existing code

is a challenging task faced on a regular basis in

multiple contexts including design verification. To

address this issue an approach has been developed for

automating dynamic system model composition by

defining the minimum set of information that is

necessary to the composition process. In this paper a

design and implementation of this approach for

standard Modelica is presented in the context of an

application case study – the verification of a new

design for spoiler activation against requirements.

Keywords: bindings, requirements, model composition,

design verification

1 Introduction

Complex cyber-physical systems within safety critical

application domains such as avionics need to take a lot

of standard and specifications into account (Kepurch,

2010). For complex system, design verification is often

challenging due to large number of requirements to be

tested. For such systems an automated approach for

connecting together system and requirement models is

necessary.

Design verification takes place in system

development steps starting from early concept

evaluation to detailed system component design. The

purpose of the presented approach to support design

verification activities
1
 by automating the task of

simulation model composition.

This paper builds upon an approach that enables

automated composition of models by expressing the

minimum of information necessary to compose the

models automatically (Schamai, 2013). In our case

study, we show how binding specification can be

defined using standard Modelica language (Modelica

Association, 2012; Fritzson 2014), and show how the

algorithm for automated binding generation can be

implemented in OpenModelica. In contrast to an

1
 Note, since this contribution focuses on implementing of

approach that is based on defining interfaces that

models have to implement, this approach enables the

integration and/or composition of models without the

need for modifying those models. This means that

requirement models and system models can be

developed separately and existing models can be used

without any modifications.

Explicitly exposing and grouping the information

that is needed to interconnect the models will reduce

analysis work. For example, when several requirements

need the same information the same binding

specification can be reused.

Additionally, automated generation of binding

expressions reduces the risk of introducing errors and

reduces modeling effort, in particular in models with

highly interrelated components and/or complex binding

expressions.

In the case study presented here we wish to verify a

particular system design for spoiler activation,

represented by a Modelica model, against requirements

that are formalized in Modelica using the Modelica

Requirements Library (Otter et al, 2014).

This paper is organized as follows: Section 2

presents the case study used in the paper. Section 3

describes the proposed syntax for defining bindings

and illustrates it on the case study. Section 4 discusses

the implementation of the algorithm for binding

generation, and finally Section 5 summarizes the

results presented in the paper.

2 Case Study Description

The selected case study is the design verification of the

secondary flight system of an aircraft.

The secondary flight control system allows

modifying the wing geometry, and consequently the

aerodynamic behaviour of the aircraft, during the

different flight phases and notably at take-off and

landing. It is composed of spoilers, flaps and slats.

DOI
10.3384/ecp15118911

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

911

Figure 1. Flight Control System

On the Airbus A350 XWB, some new functions have

been attributed to the SFCS system (Strüber, 2014):

• DFS (Differential Flap Setting): possibility of a

differential inboard/outboard deflection for loads

and drag control

• VC (Variable Camber): Uniform flaps deployment

in cruise for drag control

• ADHF (Adaptive Dropped Hinge Flaps): the gaps

between the flaps and the spoilers are optimized to

reduce turbulences at high and medium speed.

These new functions induced a new architecture of the

system and new control logics which both need to be

tested.

Figure 2. ADHF configurations

In this new architecture, the actuation of the flaps is

done by an actuation chain made of:

• Hydraulic motors

• Electrical motors

• Gears

The actuation of the spoilers is done via actuators

being servo controlled actuators (SCA) or Electric

Backup Hydraulic Actuators (EBHA). In order to

simulate the system behaviour a Modelica model has

been developed. The inputs of the system are flap

commands, aerodynamic loads on surfaces (flaps and

spoilers), and failures of some components. The model

essentially uses blocks from the Modelica Standard

Library except blocks modeling hydraulic components

which were developed specially for this application.

For confidentiality reasons, the content of the model

cannot be disclosed.

2.1 Requirements Formalization

A system is developed based on requirements which

are captured up-front typically using natural language

(Hull, 2005). To test requirements they need to be

formalized, i.e., they need to be translated into a

machine readable form. In our case study we use the

new Modelica Requirements Library (Otter et al, 2014)

developed in the MODRIO project and the extension

for calling blocks as functions implemented in

OpenModelica (Buffoni and Fritzson, 2014).

In the following we show some examples of natural

language requirements and their corresponding

versions in Modelica. Each requirement is modeled

such that it explicitly specifies the inputs it requires for

evaluation. These inputs will need to be provided by

the system or test scenario models. Further, each

requirement has an explicit status attribute which is

the requirement verdict that can take the values

undecided, violated or satisfied.

Req.001 “The torque of any ADGB electrical motor

shall not be superior to 20 N.m for more than 1 sec.”

This is translated into the following Modelica

model.

model R1
 …
 input Torque ADGBtorque = 0;
 constant Torque maxTorque = 20;
 constant Duration maxDurationForTorqueOvershoot = 1;

 Property status(start = Property.Undecided, fixed = true);

 Modelica_Requirements.ChecksInFixedWindow.MaxDuration ma

xDuration(durationMax=maxDurationForTorqueOvershoot,check=c

ondition.y);
 Modelica_Requirements.Sources.BooleanExpression condition(y=

ADGBtorque >= maxTorque);
equation
 status = maxDuration.y;
 connect(condition.y, maxDuration.condition);
end R1;

The R1 model has one input ADGBtorque. It is the

actual torque of any electrical motor. The value will

need to be provided the R1 instance by the system

model when testing this requirement using simulations.

Figure 3. R1 Modelica model

Figure 3 shows the graphical view of the R1 model. It

has two components: Condition and maxDuration

from the Modelica Requirements Library. The

condition component outputs true if the actual

torque of the motor is greater than the defined

threshold and false otherwise.

maxDuration

check

condition.y

maxOvershoot s

<=
condition

ADGBtorque >= maxTorque

7 spoilers

An Aeronautic Case Study for Requirement Formalization and Automated Model Composition in Modelica

912 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118911

This output is used as input for the maxDuration

component that outputs the status of the requirement

violation. At the very beginning, as long as the

condition is false it outputs undecided. This is

because at this point the requirement was not yet

evaluated. As soon as the condition returns true the

maxDuration component will return violated if the

condition was true for longer than 1 sec. or

satisfied otherwise.

Figure 4. R1 test results

Req.002 “The time of any action of flaps actuation

(extension/retraction) shall be less than 50 sec.”.

model R2
 …

 input Boolean isFlapsActuationAction = false;
 constant Duration maxDuration = 50;

 Property status(start = Property.Undecided, fixed = true);

 Modelica_Requirements.ChecksInFixedWindow.MaxDuration ma

xDuration1(durationMax=maxDuration,check=condition.y);
 Modelica_Requirements.Sources.BooleanExpression condition(y=i

sFlapsActuationAction);
equation
 connect(condition.y, maxDuration1.condition);
 status = maxDuration1.y;
end R2;

Figure 5. Req 002 Modelica model

The input to this model is

isFlapsActuationAction. It is a Boolean type

value to be provided by the system model when testing

this requirement using simulations. Note that at this

point it is not clear how to determine whether the flaps

actuation action takes place.

In fact there may be several ways of accessing this

information of one system design model, and there

may be several system design alternative models. It is

the task of the person who develops the design models

to specify how this data can be accessed. Section 3

discusses how this can be done.

Figure 5 shows the graphical view of the R2 model.

It includes two components: condition and

maxDuration which are instances of models from the

Modelica Requirements Library. The condition

component outputs true as long as the action flaps

actuation action takes place (i.e., extension or

retraction) and false otherwise. This output is used as

input for the maxDuration component that outputs

the status of the requirement violation.

At the very beginning, as long as the condition is

false it outputs undecided. This is because at this

point the requirement was not yet evaluated at all. As

soon as the condition the flaps actuation action starts,

the maxDuration component will measure the time. It

returns satisfied if the action took less than 50 sec.

and violated otherwise.

Figure 6. Req 002 test results

Req.003 “The flap angle shall be comprised in the

range [-5°;35°]”.

model R3
 …

 input Angle flapAngle;

 Property status(start = Property.Undecided, fixed = true);

 Modelica_Requirements.LogicalBlocks.WithinBand band1(u_max

=35, u_min=-5, u=flapAngle);
equation
 if (not band1.y) then
 status = Property.Violated;
 else
 status = Property.Satisfied;
 end if;
end R3;

The input for the model R3 is the flapAngle. Since

there will be several flaps this requirement will need to

be checked (i.e., instantiated) for each flap. The model

WithinBand from the Modelica Requirements library

is used for computing the verdict for this requirement.

maxDuration1

check

condition.y

maxDuration s

<= condition

isFlapsActuationAction

Poster Session

DOI
10.3384/ecp15118911

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

913

Figure 7. Req 003 Modelica model

The status can be evaluated at any time right from the

beginning, i.e., there will be no time instant at which

the status is undecided.

Figure 8. Req 003 test results

Req.004 “When the flap is moving, the distance

(gap) between a flap and its spoiler shall be less than

10 cm”.

Req.005 “When the flap is not moving, the distance

(gap) between a flap and its spoiler shall be less than 3

cm”.

The formalization of the requirements Req.004 and

005 is similar to Req.006 (see below).

Req.006 “The effort between a flap and its spoiler

shall be less than 1000N”.

model R6

 …

 input Force forceBetweenFlatAndItsSpoiler=0;
 constant Force maxAllowedForce=1000;

 Property status(start = Property.Undecided, fixed = true);

 Modelica_Requirements.LogicalBlocks.LessThreshold l(threshold

=maxAllowedForce, u = forceBetweenFlatAndItsSpoiler);

equation
 if not l.y then
 status = Property.Violated;
 else
 status = Property.Satisfied;
 end if;
end R6;

Figure 9. Req 006 Modelica model

Figure 10. Req 006 test results

Req.015 “The high lift system shall be able to hold

the high lift surfaces in their current position:

• Under all load conditions;

• Under all relevant environmental conditions;

• After total loss of electric and hydraulic power

(permanent or transient).

model Requirement_15
…
 input Boolean hydraulicFailure;
 input Boolean electricalFailure;
 input Angle outboardValue;
 input Angle inboardValue;

parameter Real minDerivative = 0.01 "Values in degrees/s";
Property status(start = Property.Undecided, fixed = true);

Modelica_Requirements.ChecksInFixedWindow.During during1(ch

eck=not (flapsMoving.y));
Modelica_Requirements.Sources.BooleanExpression totalFailure(y

= hydraulicFailure and electricalFailure);
 Modelica_Requirements.Sources.BooleanExpression flapsMoving(

y=abs(der(SI.Conversions.to_deg(outboardValue))) > minDerivativ

e or abs(der(SI.Conversions.to_deg(inboardValue))) > minDerivati

ve);

equation
status = during1.y;

end Requirement_15;

Req.016 “Transients in normal system operations

and in case of failure shall not cause excessive loads to

components.”

This requirement is quite challenging to formalize

since the conditions of excessive loads for each

component must be defined.

The following formalization of the requirement uses

arrays to gather variables coming from the different

instances of the different components (ADGBs, flaps,

PCU brakes). The binding mechanism will feed these

inputs with the corresponding variables depending on

the number of instances present in the model. The

PropertyAnd block synthesizes the values of the

different statuses with a 3-valued “and” logic.

band1

35

-5

maxAllow edForce

l

An Aeronautic Case Study for Requirement Formalization and Automated Model Composition in Modelica

914 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118911

model Requirement_16
…
 input Angle flapSpeed[:]; //left and right, inboard and outboard
 input Real ADGB_MotorTorque[:]; //left and right
 input Real ADGB_BrakeTorque[:]; //left and right
 input Real PCU_BrakeTorque[:]; //green and yellow brakes

 parameter Torque maxMotorTorque = 20;
 parameter Real maxDerivative = 2;
 parameter Torque maxADGB_BrakeTorque = 1e6;
 parameter Torque maxPCU_BrakeTorque = 1e6;

 Property status(start = Property.Undecided, fixed = true);

 Property ADGB_MotorStatus[size(ADGB_MotorTorque,1)];
 Property ADGB_BrakeStatus[size(ADGB_BrakeTorque,1)];
 Property PCU_BrakeStatus[size(PCU_BrakeTorque, 1)];
 Property flapOverspeedStatus[size(flapSpeed, 1)];

 Modelica_Requirements.LogicalBlocks.PropertyAnd andStatus(nu

=size(ADGB_MotorTorque,1)+size(ADGB_BrakeStatus, 1)+size(P

CU_BrakeStatus, 1)+size(flapOverspeedStatus, 1));

equation
 andStatus.u = cat(1,ADGB_MotorStatus,ADGB_BrakeStatus,PCU

_BrakeStatus,flapOverspeedStatus);
 andStatus.y = status;

 for i in 1:size(ADGB_MotorTorque,1) loop
 if abs(ADGB_MotorTorque[i])>maxMotorTorque then
 ADGB_MotorStatus[i]=Property.Violated;
 else
 ADGB_MotorStatus[i]=Property.Satisfied;
 end if;
 end for;

… (same for ADGB_BrakeTorque, PCU_BrakeTorque and

flapSpeed)

end Requirement_16;

Req.032 “A single electrical failure shall not

prevent an inboard flaps only movement.”

model Requirement_32

…
 input Boolean electricalFailure;
 input Boolean hydraulicFailure;
 input Angle outboardValue;
 input Angle inboardValue;
 input Integer mode; //mode as computed by SFCC

 Property status(start = Property.Undecided, fixed = true);

 parameter Real minDerivative = 0.01 "Value in rad/s";

 Boolean inboardMovement = abs(der(inboardValue))>= minDeriv

ative;
 Boolean outboardMovement = abs(der(outboardValue))>= minDer

ivative;

equation
 if (mode == 2 and electricalFailure) then //mode 2 = Inboard Differ

ential Flap Setting
 if (inboardMovement and not
 (outboardMovement)) then
 status = Property.Satisfied;
 else
 status = Property.Violated;

 end if;
 else
 status = Property.Undecided;
 end if;

end Requirement_32;

Figure 11. Req 032 Modelica Model

In this formalization, a mode computed by the main

control computer is used to check if a “inboard flap

only movement” is commanded (mode 2). Other

implementation could be possible but this one was

chosen for its simplicity.

Figure 11. Req 032 test results

The last figure shows the results of a real scenario of

system utilization. The model was excited with a pulse

entry with 20 degrees of amplitude to move the inboard

flaps, with no commands given to the outboard flaps.

Also, during the simulation there are cases of an

electrical failure distributed in a pulse form.

The requirement is violated during the simulation of

the model since the outboard flaps continue to move

during the electrical failures. This is due to an error in

the model or in the system design and shall be

investigated.

2.2 Verification Scenario Formalization

Scenarios are defined to stimulate the system in

different conditions. These scenarios are defined as

Modelica models providing inputs to the system model

(flap commands, loads, failures…).

0 25 50 75 100

-10

-5

0

5

10

15

20

25

0 20 40 60 80 100

1

2

3

4

Violated

Undecided

scenario_16_1.system.control.pRIMandsFCC.Mode

requirement_32.status

Outboard Flap Angle

Inboard Flap Angle

Poster Session

DOI
10.3384/ecp15118911

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

915

Figure 12. Modeling of a scenario

The scenarios must be defined so that requirements are

verified (i.e. some scenarios permit the verification of

the requirement). For this, a verification table can be

created. This table defines which scenario should

permit the verification of which requirements. After

simulation of all scenarios, the value of the

requirement will permit to check if the table is correct

(i.e. to check if the scenarios have triggered the

verification of the requirements.

 Sc01 Sc02 … Sc15 Sc16

R001 X X

R002 X X

…

R032 X X

Table 1. Verification table

3 Binding definition

This section describes the syntax for specifying the

mediators and generating the bindings. In contrast to

our previous proposals for representing bindings which

relied either on either the use of an XML

representation or on extensions to the Modelica

language, the proposal presented in this paper is fully

compliant with standard Modelica and relies on records

to represent the binding information.

Clients, in this case requirements, require certain

data. A record for representing the client, specifies the

information necessary from the client side:

record Client "Client is a model or component that requires a modifi

er (i.e. a binding)"
 extends Modelica.Icons.Record;

 String id "A qualified name for the client";

 String template = "" "A transformation that can be applied to the

generated binding expression for this client. If left empty, no transf

ormation will be applied.";

 Boolean isMandatory = false "Defines if the client must to be bo

und or if a binding is optional.";
 end Client;

A number of fields that are optional have predefined

values, so that they do not need to be specified if not

relevant for a specific binding.

Providers make data available to clients. The

information specified by a provider is defined in the

record below:

 record Provider "Provider specifies how to access data required for

 clients that are linked to the mediator this provider is used for."
 extends Modelica.Icons.Record;

 String id "A qualified name for the provider. ";
 String template = "" "Code snippet with placeholders used for ge

nerating part of binding expression. If left empty, no transformation

 will be applied.";

 end Provider;

Clients and providers do not know each other a

priori. In order to relate a set of clients and a set of

providers, we use the mediators, defined by the record

below:

 record Mediator "Mediator captures data required for inferring bin

ding expression for referenced clients using referenced providers."
 extends Modelica.Icons.Record;

 String name = "" "Reflects what is needed by referenced clients.

Optional.";
 String mType = "" "Reflects the type required by referenced clei

nts. Optional.";

 String template = "" "A transformation that can include calls to fu

nctions that can handle unsorted arrays(e.g., add(:), max(:), toArray(

:), etc.). If left empty, no transformation will be applied.";

 Client clients[:] "List of clients.";
 Provider providers[:] "List of providers.";

 end Mediator;

A more detailed description of the mediator concept

can be found in (Schamai, 2013).

3.1 Binding Specification

Section 2.1 shows examples of formalized

requirements. The corresponding requirement models

from require the following data:

• Current distance between flap and its spoiler (for

R4.distanceBetweenFlapAndItsSpoiler and R5.

distanceFlapSpoiler)

• Current flap angle (for R3.flapAngle)

• Current force between flap and its spoiler (for

R6.forceBetweenFlapAndItsSpoiler)

An Aeronautic Case Study for Requirement Formalization and Automated Model Composition in Modelica

916 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118911

• Current torque of electrical motor

(R1.ADGBtorque)

• Flap is moving (for R4.isFlapMoving and

R5.isFlapMoving)

The system model determines which of the

requirements will be tested and how they will be

combined with scenario models. Furthermore, there

might be requirements which are repeatedly imposed

on system parts of the same kind that exist inside the

system model (e.g., there are several flaps in our

model).

The purpose of the binding specification is to

capture the minimum information in order to enable

creating any combination of the system model and a set

of requirements such that they will be bound correctly

in an automated fashion, as well as to enable

determining how many times a particular requirement

needs to instantiated.

In order to do so, the user will now define mediators

(Schamai et al, 2014). In our example the mediators

reflect (i.e., contain information about) what data will

need to be provided by the system model in order to

enable testing of particular requirements (the clients).

Consider the mediator M1. It defines that any

instance of the requirement models

R4.distanceBetweenFlapAndItsSpoiler and

R5.distanceFlapSpoiler (clients) have to be

bound
2
 to some other components in order to retrieve

the value during simulating. The value can be accessed

inside the instance of the type Spoilers.

Spoiler_SC.elastoGap (provider) by using its sub-

component elastoGap.s_rel (captured by the

template attribute) whereby getPath() will be

replaced by the instance path of the provider model.

Other mediators are defined in a similar way.

 record M1
 import BindingDefinition.*;
 import Req.*;
 import SpoilerActuation_v7.*;

 extends Mediator(
 name = "Current distance between flap and its spoiler",
 mType = "Modelica.SIunits.Distance",
 clients = {
Client(id="R4.distanceBetweenFlapAndItsSpoiler",
isMandatory=true),
Client(id="R5.distanceFlapSpoiler",
isMandatory=true)},
 providers = {
Provider(id="Spoilers.Spoiler_SC.elastoGap",
template="getPath().elastoGap.s_rel")});
 end M1;

record M2
…
 extends Mediator(
 name="Current flap angle",

2
 This is indicated by the attribute isMandatory=true

 mType="Modelica.SIunits.Angle",
 clients={Client(id="R3.flapAngle", isMandatory=true)},
 providers={Provider(id="Flaps.Flap.FlapAngle")});

end M2;

record M3
 …
 extends Mediator(
 name="Current force between flap and its spoiler",
 mType="Modelica.SIunits.Force",
 clients={Client(id="R6.forceBetweenFlatAndItsSpoiler",
isMandatory=true)},
 providers={Provider(id=" Spoilers.Spoiler_SC.elastoGap",
template="getPath().flange_a")});

end M3;

record M4
…

 extends Mediator(
 name="Current torque of electrical motor",
 mType="Modelica.SIunits.Torque",
 clients={Client(id="R1.ADGBtorque", isMandatory=true)},
 providers={
Provider(id="Flaps.ActuationChainComponents.MotorModel.flange

_b", template="getPath().tau")});

end M4;

record M5
…
 extends Mediator(
 name=" Flap is moving",
 mType="Boolean",
 clients={
 Client(id="R4.isFlapMoving", isMandatory=true),
 Client(id="R5.isFlapMoving",isMandatory=true)},
 providers={
 Provider(id="Control.SFCC.Mode", template="getPath() <> 4")

});
end M5;

record M6
…

 extends Mediator(
 name="Flaps actuation action is taking place",
 mType="Boolean",
 clients={Client(id="R2.isFlapsActuationAction",
isMandatory=true)},
 providers={Provider(id="Control.SFCC.Mode",
template="getPath() <> 4")});

end M6;

4 Binding generation

Once the bindings are specified a verification model

can be created containing the system model and the

requirements to be verified.

model VeM01

 import Req.*;
 import SpoilerActuation_v7.*;
 System sm_system;

 R1 r1; R2 r2; R3 r3; R4 r4; R5 r5; R6 r6;

end VeM01;

Poster Session

DOI
10.3384/ecp15118911

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

917

The system model imports the packages where the

mediators that can be used in the binding computation

are defined.

The OpenModelica API has been extended with a

call: inferBindings(systemModel, program);

The call accepts as arguments the name of

systemModel as well as the environment (here

program) with all the loaded classes where it will look

for the mediator definitions and update the

systemModel with the binding expressions in the

form of modifiers.

Figure 13 Binding generation in OpenModelica

The algorithm for binding generation is implemented

in OpenModelica as it is defined in (Schamai et al,

2014). First an instance tree is built for the model to be

bound (see Figure 14). This instance tree is represented

in an internal data structure and all the clients and

providers are identified by checking whether they

match the client or provider paths defined in any

mediators. For instance mediator M4 specifies only

one client : Client(id="R1.ADGBtorque", isMandatory=true)

and therefore ADGBtorque will be marked as a client

in the instantiation tree. All the mediator data is also

stored in an internal structure with references to all the

instances of clients and providers found for each

mediator.

Once all the internal structures are created, for each

client the bindings are computed by localizing all the

providers. If more than one provider is present then a

template must be defined in the mediator to describe

how the inputs from different clients must be

combined. In mediator M4 we only have one provider

defined:
Provider(id="Flaps.ActuationChainComponents.MotorModel.flange

_b", template="getPath().tau")

As in the model we have two instances of

MotorModel, right and left, two provider instances will

be found by the algorithm.

The getPath() call is replaced with the path of the

component instance in the environment, in this

example
sm_system.flaps.actuationChain.ADGB_Left.motorModel.flange_b

and sm_system.flaps.actuationChain.ADGB_Right.motorModel

.flange_b and the template is used to generate a binding

expression, in this case to point to tau inside each of the

providers.

Figure 14 Instantiation tree

The algorithm figures out the required number of

requirement instantiations and generates the binding

expressions. For instance, in this example we need two

instances of R1, one for each motor and as the model

used in this use case has four flaps, four instances of

R4 will be needed. Binding expressions are

implemented as modifiers that will be applied to the

components and sub-components of systemModel.

If the algorithm cannot find a binding for a

mandatory client, or several binding are possible for

the same client, the result will be an error message.

Update Bindings

VeM01

req1
sm_system

ADGBtorque

…

…
…

(client)

LeftMotorModel RightMotorModel

Flange_b

(provider)
Flange_b

(provider)

…

An Aeronautic Case Study for Requirement Formalization and Automated Model Composition in Modelica

918 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118911

Similarly, when several instances of requirements that

require more than one input need to be generated, user

involvement may be needed to indicate how to

correctly pair up the providers. In future versions of

the implementation, support for storing and reusing

user decisions will be implemented through the use of

annotations.

For example, regarding the system model specified

for this case study, the algorithm will generate the

following binding expressions:

model VeM01
 import Req.*;
 import SpoilerActuation_v7.*;

 System sm_system;

 R1 req_001_0_r1(ADGBtorque = sm_system.flaps.actuationChain.

ADGB_Left.motorModel.flange_b.tau);

 R1 req_001_1_r1(ADGBtorque = sm_system.flaps.actuationChain.

 ADGB_Right.motorModel.flange_b.tau);
 R2 req_002_r2(isFlapsActuationAction = sm_system.control

.pRIMandsFCC.Mode <> 4);
 R3 req_003_0_r3(flapAngle = sm_system.flaps.FlapLI.FlapAngle);
 R3 req_003_1_r3(flapAngle

 = sm_system.flaps.FlapLO.FlapAngle);
 R3 req_003_2_r3(flapAngle = sm_system.flaps.FlapRI.FlapAngle);
 R3 req_003_3_r3(flapAngle

= sm_system.flaps.FlapRO.FlapAngle);
 R4 req_004_0_r4(distanceBetweenFlapAndItsSpoiler =

sm_system.LISpoiler.elastoGap.elastoGap.s_rel,

isFlapMoving =

sm_system.control.pRIMandsFCC.Mode <> 4);
 R4 req_004_1_r4(distanceBetweenFlapAndItsSpoiler =

sm_system.LOSpoiler.elastoGap.elastoGap.s_rel,

isFlapMoving =

sm_system.control.pRIMandsFCC.Mode <> 4);
 R4 req_004_2_r4(distanceBetweenFlapAndItsSpoiler =

 sm_system.RISpoiler.elastoGap.elastoGap.s_rel,

isFlapMoving =

sm_system.control.pRIMandsFCC.Mode <> 4);
 R4 req_004_3_r4(distanceBetweenFlapAndItsSpoiler =

 sm_system.ROSpoiler.elastoGap.elastoGap.s_rel,

isFlapMoving =

sm_system.control.pRIMandsFCC.Mode <> 4);
 R5 req_005_0_r5(distanceFlapSpoiler =

 sm_system.LISpoiler.elastoGap.elastoGap.s_rel,

isFlapMoving =

sm_system.control.pRIMandsFCC.Mode <> 4);
 R5 req_005_1_r5(distanceFlapSpoiler =

sm_system.LOSpoiler.elastoGap.elastoGap.s_rel,

isFlapMoving =

sm_system.control.pRIMandsFCC.Mode <> 4);
 R5 req_005_2_r5(distanceFlapSpoiler =

sm_system.RISpoiler.elastoGap.elastoGap.s_rel,

isFlapMoving =

sm_system.control.pRIMandsFCC.Mode <> 4);
 R5 req_005_3_r5(distanceFlapSpoiler =

 sm_system.ROSpoiler.elastoGap.elastoGap.s_rel,

isFlapMoving =

sm_system.control.pRIMandsFCC.Mode <> 4);
end VeM01;

Once the bindings are defined, if we want to modify

the system design, for instance adding backup

components to the system or modifying the number of

flaps, then the bindings can be regenerated with no

additional effort.

Moreover, bindings can be used in batch testing to

automatically generate verification models with

different scenarios and different requirement subsets.

This is something that would be difficult to do using

explicit interfaces.

5 Conclusion

In this paper we have presented:

• A new application of design verification on an

industrial case study in the field of aeronautics.

• The use of the new requirement modeling library

for formalizing the requirements of the case study.

We have shown that the binding approach is fully

compatible with the new Modelica Requirements

library.

• A modified version of the syntax for representing

binding specification that is fully compliant with

standard Modelica syntax, meaning that binding

specifications can be edited and visualized in any

Modelica tool. In order to support the binding

generation, a tool has to simply implement the

binding algorithm in (Schamai, 2014).

• An implementation of the binding algorithm in

OpenModelica

The binding approach does not assume prior

knowledge of each other by the respective models and

therefore increases decoupling and allows reuse of

existing models and libraries. As mediators can be

defined in several steps this means that different people

can provide the information necessary to connect the

models at different stages in the design process.

Moreover, the binding algorithm is general and can

be used for binding models in other contexts than

requirement verification. Furthermore, it enables a

formal traceability between client and provider models.

For example, determining which requirements are

implemented in the system design model at hand can

be achieved by looking at the bindings for mandatory

requirement clients.

The case study is work in progress, but it has

already allowed to detect a number of relevant issues in

the model.

Clearly, the effectiveness of the presented approach

is jeopardized when bindings are specified such that

they result into too many ambiguous matches to be

resolved by user manually. Such situation should be

detected. Possible resolution could include: Providing

hints for modifying the binding specifications;

Enabling user to add more information to the binding

specification for handling special cases; Or supporting

the user by providing the list of all possible

combinations to choose from. More complete results,

for example, the evaluation of this approach on real

projects with large number of requirements is still

subject to future work.

Poster Session

DOI
10.3384/ecp15118911

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

919

Acknowledgements

This work is partially supported by the EU INTO-CPS

project and the ITEA 2 MODRIO project via the

Swedish Government (Vinnova) and the German and

French Government.

References

Lena Buffoni and Peter Fritzson. Expressing Requirements

in Modelica. In Proceedings of the 55th International

Conference on Simulation and Modeling (SIMS 2014),

Aalborg, Denmark, October 21-22, 2014.

Peter Fritzson. Principles of Object Oriented Modeling and

Simulation with Modelica 3.3: A Cyber-Physical

Approach. 1250 pages. ISBN 9781-118-859124, Wiley

IEEE Press, 2014.

Hull, E., Jackson, K., and Dick, J. Requirements En-

gineering. Springer, 2005.

Kapurch, S. NASA Systems Engineering Handbook. DIANE

Publishing Company, 2010. URL http://

books.google.se/books?id=2CDrawe5AvEC.

Martin Otter, Lena Buffoni, Peter Fritzson, Martin Sjölund,

Wladimir Schamai, Alfredo Garro, Andrea Tundis, Hilding

Elmqvist. D2.1.1 – Modelica Extensions for Properties

Modelling, Part IV: Modelica for Properties Modeling.

Internal Report, ITEA2 MODRIO project, Sept. 2014.

Modelica Association. Modelica, A Unified Object-Oriented

Language for Systems Modeling, Language Specification,

Version 3.3, May 9, 2012.

https://www.modelica.org/documents/ModelicaSpec33.pdf

Wladimir Schamai. Model-Based Verification of Dynamic

System Behavior against Requirements. Ph.D. thesis,

Method, Language, and Tool Linköping: Linköping

University Electronic Press, Dissertations, 1547, 2013..

Wladimir Schamai, Lena Buffoni, and Peter Fritzson, An

Approach to Automated Model Composition Illustrated in

the Context of Design Verification. Journal of Modeling,

Identification and Control, Volume 35- 2, pages 79—91,

2014.

H. Strüber The Aerodynamic Design of the A350 XWB-900

High Lift System. 29th Congress of the International

COuncil of the Aeronautical Sciences. St Petersburg,

2014.

An Aeronautic Case Study for Requirement Formalization and Automated Model Composition in Modelica

920 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118911

