
Coupling Model Exchange FMUs for

Aggregated Simulation by Open Source Tools

Pukashawar Pannu1 Christian Andersson1,2 Claus Führer1 Johan Åkesson2

1Centre for Mathematical Sciences, Lund University, Sweden
2Modelon AB, Sweden

Abstract

The Functional Mock-up Interface standard allows to
generate stand-alone sub-systems which can be simu-
lated and verified individually. In this paper we present a
design of a model aggregation which allows to simulate
several Functional Mock-up Units as a coupled model.
The formulation is based on Assimulo as a numeri-
cal integration environment. Assimulo problem classes
are extended to a class for aggregated problems which
collects information provided by the Functional Mock-
up Units through the tool PyFMI together with Python
based problem classes defined by Assimulo. This allows
to set-up test environments of complex models composed
of several sub-systems.
Keywords: FMI, Jacobian, Algebraic loops, Events,

Model Exchange 2.0, Assimulo

1 Introduction

The Functional Mock-up Interface (FMI) (Blochwitz
et al., 2012) has gained momentum in simulation of
dynamical systems and in exchanging dynamic simula-
tion models between tools. The standard has proven to
be highly successful as it fills a gap where there were
costly custom integrations before. The open source tools
PyFMI 1 together with Assimulo (Andersson et al., 2015)
provide a solid foundation for performing simulations
and experiments on single Functional Mock-up Units
(FMUs).

A key feature that is currently lacking is the ability
to easily simulate coupled systems and thus fully taking
advantage of the standard.

In this article, an extension to the open-source tools
PyFMI and Assimulo is presented that allows for simu-
lation of coupled model exchange FMUs following the
FMI 2.0 standard. The extension enables coupling of
FMUs and models written directly in Python to a so-
called aggregated model.

1http://www.pyfmi.org PyFMI - Version 2.1. Accessed,
2015-05-18

The dynamical models considered here can be de-
scribed as,

˙̄x = f̄ (x̄, ū) (1a)

ȳ = ḡ(x̄, ū) (1b)

where x̄ represents the states, ū the input signal and ȳ the
output, consistent with the FMI.

Commonly, a full system model is represented by sev-
eral stand-alone sub-systems coupled together by cou-
pling equations to a model for a global system. This re-
sults in the following general system description,

ẋ = f (x,u,w) (2a)

y = g(x,u,w) (2b)

u = c(y,w) (2c)

where x represents the combined states from the separate
models. The local inputs for the ith model, ū[i], has here
been separated into two vectors, ū[i] = [û[i], ŵ[i]], and sub-
sequently combined into the global vectors (for N mod-
els), u = [û[1], . . . , û[N]] and w = [ŵ[1]

, . . . , ŵ[N]]. This as
to separate between inputs determined by the coupling,
u, and external inputs acting on the coupled system, w.
In general the external inputs can not only influence the
model behaviour directly but also the coupling, Eq (2c),
which is highlighted in Section 3.

When solving a coupled system, an approach is co-
simulation as is explored in (Andersson, 2013) where
the systems have their own integrator and the focus is on
communication between systems. In this paper however,
the focus is on coupling model exchange FMUs under a
single solver.

2 Concept

The idea is to take N coupled sub-systems, either FMUs
or Python models, and aggregate them into a single sys-
tem and treating the final full system as any other model.
In order to facilitate the general description of a sub-
system, as is defined in FMI, for the aggregated system,

DOI
10.3384/ecp15118903

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

903

care needs to be considered in how for example the Ja-
cobian is defined. The Jacobian is a necessity when us-
ing implicit methods for solving the resulting system and
is discussed in Section 2.3. Additionally, the events for
each sub-system and external events need to be consid-
ered, discussed in Section 2.2, as well as algebraic loops
which can occur due to the coupling, Section 2.4.

Now, looking at N sub-systems,

˙̄x[1]1 = f̄
[1]
1 (x̄

[1]
1 , û

[1]
1 , ŵ

[1]
1) (3a)

ȳ
[1]
1 = ḡ

[1]
1 (x̄

[1]
1 , û

[1]
1 , ŵ

[1]
1) (3b)

ū
[1]
1 = c̄

[1]
1 (ȳ[1], ŵ

[1]
1) (3c)

...

˙̄x[N]
N = f̄

[N]
N (x̄

[N]
N , û

[N]
N , ŵ

[N]
N) (4a)

ȳ
[N]
N = ḡ

[N]
N (x̄

[N]
N , û

[N]
N , ŵ

[N]
N) (4b)

ū
[N]
N = c̄

[N]
N (ȳ[N]

, ŵ
[N]
N) (4c)

and the resulting aggregated system,

ẋ = f (x,u,w) =

f̄
[1]
1 (x̄

[1]
1 , û

[1]
1 , ŵ

[1]
1)

...

f̄
[N]
1 (x̄

[N]
1 , û

[N]
1 , ŵ

[N]
1)

 (5a)

y = g(x,u,w) =

ḡ
[1]
N (x̄

[1]
N , û

[1]
N , ŵ

[1]
N)

...

ḡ
[N]
N (x̄

[N]
N , û

[N]
N , ŵ

[N]
N)

 (5b)

u = c(y,w) =

c̄
[1]
1 (ȳ[1], ŵ

[1]
1)

...

c̄
[N]
N (ȳ[N]

, ŵ
[N]
N)

 (5c)

The vectors x, y, u and w of the aggregated system are
defined as:

x =

x̄
[1]
1
...

x̄
[N]
N

 , y =

ȳ
[1]
1
...

ȳ
[N]
N

 , u =

û
[1]
1
...

û
[N]
n

 ,w =

ŵ
[1]
1
...

ŵ
[N]
N

2.1 Aggregated Problem

Using the open-source tools PyFMI together with
Assimulo, an FMU can be accessed from Python
together with being solved using solvers available
in Assimulo. With this in mind two Assimulo
problem classes have been worked on. One that
creates an input/output problem structure called
ExplicitProblemModel. The other aggregates
several FMUs, or ExplicitProblemModels,

to one large problem that can be integrated us-
ing one of Assimulos available solvers, called
AggregatedProblem. For simplicity an al-
ready existing problem class, ExplicitProblem,
was extended to handle the aggregation. To define an
aggregated problem class some basic data is required:

• Aggregated states.

• RHS (Right-Hand-Side) function of aggregation.

• Coupling handling.

Through PyFMI there exists already a wrapper in-
terface that can load an FMU ME 2.0 and inte-
grate it using Assimulo. When instantiating the
AggregatedProblem class a list of FMUs is pro-
vided from which the initial states are easily accessible
and aggregated,

f o r model in models :

a g g r e g a t e d _ x 0 a g g r e g a t e mode l .x0

The crucial part of the aggregated problem class is how
to handle the right hand side function. The first major
difference between an aggregated problem and an As-
simulo problem is the presence of couplings. For each
call to the RHS, coupling terms must be up to date. The
condition can be satisfied by updating the coupling rela-
tions within the RHS-function.

Since the separate problem classes already have an
RHS-function structure, computing the RHS-function of
the aggregated system is simply to call the RHS-function
of each sub-system,

s e t _ c o n n e c t i o n s ()

f o r model in models :

a g g r e g a t e d _ r h s a g g r e g a t e m o d e l . r h s

Coupling handling is done in set_connections(). For

simple cases when for example system A input u
[A]
2 needs

inputs from system B output y
[B]
4 , the function simply sets

u
[A]
2 = y

[B]
4 . However, this is not always the case which is

further discussed in Section 2.4.
For implicit solvers a Jacobian is required and must be

provided by AggregatedProblem. More advanced
models require AggregatedProblem to take into ac-
count events and algebraic loops. The three mentioned
topics are affected by aggregation and are discussed in
the following sections.

2.2 Events

Many models include discontinuities. One way of in-
tegrating such systems is by using events (Eich-Soelner
and Führer, 1998) which requires that a set of event in-
dicators are monitored during the integration. The inte-
gration is interrupted when conditions on the event indi-

Coupling Model Exchange FMUs for Aggregated Simulation by Open Source Tools

904 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118903

cators are violated and the event (discontinuity) is appro-
priately handled, finally the integration is restarted. Most
of the solvers available in Assimulo have this functional-
ity (Fredriksson et al., 2014).

The aggregated problem can access event indicators
of an FMU. When asked for event indicators by an As-
simulo solver the AggregatedProblem combines all
event indicators from the sub-systems and hands them
to the solver. Once an event has been detected and
the integration stopped, the problem class identifies the
triggered event and calls the corresponding sub-system’s
event handling.

Another type of events in FMUs are time events,
which are known at the start of a simulation. They split
up the integration into segments by setting up end times
for the simulation at which point an event is handled (An-
dersson, 2013). This could be, for instance, a force peri-
odically applied to the system. It is up to the aggregated
system to search through all sub-systems for the closest
time event to define the end time of the next integration
segment and handle the event.

From the Assimulo problem design it is simple to add
events to a problem. For the aggregated problem, adding
of events would be to add external events to a coupled
system. Events can not only be provided through the
sub-systems but also through how the system is coupled.
Consider a pendulum with no knowledge of its surround-
ings. Now, in the system model the pendulum is posi-
tioned such that its degree of freedom is limited by for
instance positioning close to a wall. The limitation can
be considered as an external event that needs to be taken
into account. In the problem formulation this is easily
done by providing extra sets of event indicators for the
integrator to monitor.

2.3 Jacobian

When solving an ODE the Jacobian can be explicitly pro-
vided or numerically approximated. For an uncoupled
input/output system where the inputs are only time de-
pendent the Jacobian, ∂ f̄

∂ x̄
, is computed. When looking at

a coupled system the dynamic changes. Due to coupling
some input terms are state dependent instead of time de-
pendent as in the uncoupled case. Consider the coupled
system,

ẋ = f (x,u,w) (6a)

y = g(x,u,w) (6b)

u = c(y,w) (6c)

Inserting Eq (6c) into Eq (6a) and Eq (6b) gives:

ẋ = f (x,c(y),w) (7a)

y = g(x,c(y),w) (7b)

Differentiating Eq (7a) with respect to x yields:

J =
∂ f

∂x
+

∂ f

∂c

∂c

∂y

∂y

∂x
(8)

The term ∂y
∂x

is found by differentiating Eq (7b):

∂y

∂x
=

∂g

∂x
+

∂g

∂c

∂c

∂y

∂y

∂x
(9)

Solving for ∂y
∂x

gives:

∂y

∂x
=

(

I −
∂g

∂c

∂c

∂y

)
−1

∂g

∂x
(10)

Resulting in the Jacobian:

J =
∂ f

∂x
+

∂ f

∂c

∂c

∂y

(

I −
∂g

∂c

∂c

∂y

)
−1

∂g

∂x
(11)

For the system to be solvable there is necessary condition
that (I − ∂g

∂c
∂c
∂y
) is non singular. The ∂g

∂c
term handles the

coupling relations and ∂c
∂y

the sub-system feed-through
terms.

With FMI 2.0 models have an option to provide
directional derivatives. In case they are provided
AggregatedProblem uses directional derivatives to
approximate the aggregated Jacobian matrix. If direc-
tional derivatives are unavailable a forward difference
scheme is applied. The same applies for non-FMI mod-
els.

2.4 Algebraic Loops

When a system contains feed-through, i.e. when the par-
tial derivative of Eq (6b) with respect to u is not the zero
matrix, then, in general, an equation system needs to be
solved to maintain consistent input and output values sat-
isfying,

y = g(x,u,w) (12a)

u = c(y,w). (12b)

By rewriting Eq (12a) to,

y−g(x,c(y,w),w) = 0 (13)

the algebraic loop can be solved by an iterative method.
AggregatedProblem creates a residual function of
the left-hand-side of Eq (13) and uses the Kinsol solver
in Assimulo to solve the problem. Kinsol is a non-
linear algebraic equation solver, part of the SUNDIALS
suite (Hindmarsh et al., 2005). When the outputs are
known, Eq (12b) is used to update the inputs.

2.5 Workflow

The simulation flow of coupled systems using the aggre-
gated problem class and an Assimulo solver is illustrated
in Figure 1. The simulation flow is essentially equiva-
lent to that of simulating an ODE with Assimulo, how-
ever, some nodes are affected by aggregation and these
are coloured blue in the figure.

Poster Session

DOI
10.3384/ecp15118903

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

905

Figure 1. Assimulo simulation flow of coupled systems using
FMUs, Assimulo problems and the aggregated problem class.
The blue color represents nodes that are affected by aggrega-
tion.

3 Examples

In this section, the proposed framework is demonstrated.
The ability to couple model exchange FMUs is shown
together with coupling of FMUs with models directly
defined in Python. Additionally, simulation of coupled
models with externally defined events is demonstrated.

3.1 Coupled Pendula

This example demonstrates how two FMUs, each de-
scribing a pendulum, are coupled to an aggregated
model. The full system consists of two pendula coupled
by a force and excited by two inputs acting on the pivots.

The pendulum, with mass 1 kg and length 1 m, is de-
scribed by,

˙̄x1 = x̄3 (14a)
˙̄x2 = x̄4 (14b)
˙̄x3 = ū1 −2x̄1λ + ū2 (14c)
˙̄x4 =−g−2x̄2λ + ū3 (14d)

0 = x̄2
1 + x̄2

2 −1 (14e)

ȳ1 = x̄1 (14f)

ȳ2 = x̄2 (14g)

where x̄1, x̄2 are positions and x̄3, x̄4 velocities relative to

the pendulum’s pivot. The inputs are forces, ū2 and ū3,
acting on the body’s center and an acceleration, ū1 due
to a forced motion of the pivot. The outputs, ȳ, are the
positions.

In order to couple two pendula, i = [1,2], the input
vector is split for each pendulum into external excitations
and inputs determined by the coupling,

ū[i] = [ū
[i]
1

︸︷︷︸

ŵ[i]

, ū
[i]
2 , ū

[i]
3

︸ ︷︷ ︸

û[i]

]. (15)

The two pendula are coupled by a linear spring which is
determined by the equation, u = c(y,w),

û
[1]
2

û
[1]
3

û
[2]
2

û
[2]
3

= k

ȳ
[1]
1 −a+w1 − (ȳ

[2]
1 −b−w2)

ȳ
[1]
2 − ȳ

[2]
2

−(ȳ
[1]
1 −a+w1 − (ȳ

[2]
1 −b−w2))

−(ȳ
[1]
2 − ȳ

[2]
2)

︸ ︷︷ ︸

=:ρ

(16)

where k is the stiffness ratio. Variable a represents the
pivot points x-coordinate of the left pendulum and b the
point of the right pendulum. The external input vector is,

w = [w1,w2, ŵ
[1]
, ŵ[2]]. (17)

The setup is shown in Figure 2. As previously men-
tioned, it is necessary to include the external inputs into
the coupling as is made evident in this example. Note
also, that in this example ŵ[i] has to be chosen as ẅ[i].

Figure 2. Two pendulums coupled via a spring.

The pendulum is modelled in the Modelica language
and using the open-source tool JModelica.org (Åkesson
et al., 2010) the Modelica model is compiled into an
FMU. The tool is responsible for transforming the pen-
dulum which is described as a DAE of index 3 into an
ODE that FMI supports.

The aggregated system was integrated using Assimulo
CVode solver with tolerances atol = rtol = 10−8 for 5

Coupling Model Exchange FMUs for Aggregated Simulation by Open Source Tools

906 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118903

seconds and the Jacobian approximated with forward dif-
ferences. Initital conditions for the system,

x̄
[1]
1 = 1 (18)

x̄
[1]
2 = 0 (19)

x̄
[2]
1 =−1 (20)

x̄
[2]
2 = 0 (21)

note that the initial conditions are from the reference
point of each pendulums pivot. The pivot points are lo-
cated at (−2,0) for the left pendulum and (2,0) for the
pendulum to the right. As external forces acting on the
pivots the sin(t) function was chosen. Stiffness ratio of
the spring is set to k = 1.0 N/m.

As reference a monolithic model of the system was
created in Modelica and simulated in Dymola (Dassault
Systèmes, 2016) using the solver Dassl with tolerance
tol = 10−12. Error of both pendulums x, y positions is
presented in Figure 3 in log-scale.

0 1 2 3 4 5
time (s)

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

E
rr

o
r

Error of x, y Positions of FMU Coupled Pendula Problem

x
[1]
1

x
[1]
2

x
[2]
1

x
[2]
2

Figure 3. Error of x, y positions of aggregated coupled pen-
dulum described in Section 3.1, simulated with CVode with
atol = rtol = 10−8 for 5 seconds. x

[i]
1 denotes the x-coordinate

and x
[i]
2 the y of model i. Model [1] is the pendulum to the left

and [2] the one to the right.

3.2 Coupled Pendula with Different Model

Types

Three aggregated systems of coupled pendulas were
modelled and compared to a monolithic reference model.
The first system built by two FMU models modelled in
Modelica and compiled with JModelica.org. The second
by two Assimulo models and the third with the left pen-
dulum as an Assimulo model and the right pendulum as
an FMU. For this example the pendulums were modelled
as ODEs in polar coordinates with unit mass and length,

˙̄x1 = x̄2 (22a)
˙̄x2 = (−g+ ū3)sin(x̄1)+(ū2 + ū1)cos(x̄1) (22b)

ȳ1 = x̄1 (22c)

where g is gravitational acceleration, x̄1 is angular dis-
placement with respect to the pivot point, x̄2 angular ve-
locity. The inputs ū2 and ū3 are forces acting on the bob
horizontally and vertically respectively. ū1 is an input
of acceleration due to a forced motion of the pivot. The
output, ȳ1, is the angular displacement.

Similarly to the example described in Section 3.1 the
input vector is split into external excitations and inputs
by coupling.

ū[i] = [ū
[i]
1

︸︷︷︸

ŵ[i]

, ū
[i]
2 , ū

[i]
3

︸ ︷︷ ︸

û[i]

]. (23)

The linear spring coupling the two pendulas is deter-
mined by,

û
[1]
2

û
[1]
3

û
[2]
2

û
[2]
3

= k

(sin(ȳ
[1]
1)−a+w1)− (sin(ȳ

[2]
1)−b−w2)

(−cos(ȳ
[1]
1)− (−cos(ȳ

[2]
1))

−((sin(ȳ
[1]
1)−a−w1)− (sin(ȳ

[2]
1)−b−w2))

−((−cos(ȳ
[1]
1)− (−cos(ȳ

[2]
1)))

︸ ︷︷ ︸

=:ρ

(24)

where k is the stiffness ratio. Variables a and b represent
the pivot points x-coordinate for the left-hand-side and
right-hand-side pendulas respectively. The external input
vector is,

u1 = [w1,w2, ŵ
[1]
,

ˆw[2]]. (25)

As with example in Section 3.1, ŵ[i] has to be chosen as
ẅ[i].

Initial conditions for the aggregated system were cho-
sen for the pendulas to mirror each other with angles π

2
and −

π
2 for the left and right pendulas and zero initial

angular velocity.

x̄
[1]
1 =

π

2
(26a)

x̄
[1]
2 = 0 (26b)

x̄
[2]
1 =−

π

2
(26c)

x̄
[2]
2 = 0 (26d)

As external force exciting the pendula pivots a sin(t) sig-
nal was chosen and the springs stiffness ratio k = 1.0
N/m.

The aggregated system was integrated using the
CVode solver in the Assimulo package with tolerances,
atol = rtol = 10−8 for a time of 5 seconds and the Ja-
cobian approximated using forward differences. Results
were then compared to a reference where the coupled
pendulas were modelled as a monolithic system in Mod-
elica and simulated with Dassl in Dymola using toler-
ance tol = 10−12. Figure 4 shows the error in log-scale
of the angle x̄

[1]
1 of all three systems compared to the con-

trol. The same plot for angle x̄
[2]
1 is shown in Figure 5.

Poster Session

DOI
10.3384/ecp15118903

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

907

0 1 2 3 4 5
time (s)

10-11

10-10

10-9

10-8

10-7

10-6

10-5

E
rr

o
r

Angle x [1]
1 Error of Coupled Pendula System

Coupled FMUs
Coupled Assimulo Problems
Mixed FMUs and Assimulo Problems

Figure 4. Error of angle x
[1]
1 of aggregated FMU, Assimulo

and mixed systems, simulated for 5 seconds with tolerances
atol = rtol = 10−8 with CVode solver in Assimulo package.

0 1 2 3 4 5
time (s)

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

E
rr

o
r

Angle x [2]
1 Error of Coupled Pendula System

Coupled FMUs
Coupled Assimulo Problems
Mixed FMUs and Assimulo Problems

Figure 5. Error of angle x
[2]
1 of aggregated FMU, Assimulo

and mixed systems, simulated for 5 seconds with tolerances
atol = rtol = 10−8 with CVode solver in Assimulo package.

3.3 Coupled Pendula Impact on Wall

The aggregated system constructed with two FMUs in
Section 3.1 is here reused with the addition of discon-
tinuities as two walls are externally placed in the path
of the two pendulums’ swinging motion. One wall for
each pendulum. This as to highlight the possiblity of
externally adding state events to the coupled problem.
Also the external forces acting on the pivots have been
removed.

When the bob hits the wall a discontinuity occurs.
This is handled by defining event indicators that trigger
an event when the impact occurs. Event indicators are
defined as zero-crossings as,

event [i] = wall[i]− x̄
[i]
1 (27)

where wall[i] is the x-coordinate of the wall blocking
pendulum [i]. The impact itself is elastic and the event
handling is done by simply reversing the velocity of the
bob. For the pendulum to the left a wall is placed di-
rectly below the pivot point and the impact occurs when

0 1 2 3 4 5
time (s)

1.0

0.5

0.0

0.5

1.0

D
is

p
la

ce
m

e
n
t

in
 x

-c
o
o
rd

.
w

it
h
 r

e
sp

e
ct

 t
o
 p

iv
o
t

p
o
in

t

x Coordinates of Coupled Pendulums with Impact on Walls

x
[1]
1

wall[1]

x
[2]
1

wall[2]

Figure 6. Shows the x-coordinate displacement, with respect
to their own pivots, of the pendulums [1], to the left, and [2],
to the right, has they hit a wall. The horizontal lines represent
walls blocking each pendulums path.

the bobs x-coordinate reaches x̄
[1]
1 = 0 with respect to

its pivot. The right-hand-side pendulum wall is placed
slightly to the right of its pivot and the bob impacts the
wall when its x-coordinate reaches x̄

[2]
1 = 0.3 with re-

spect to its pivot. Initial conditions and parameters are
the same as for the example described in Section 3.1.

The aggregated system was integrated with the
CVode solver with tolerances atol = rtol = 10−8 for 5
seconds. Figure 6 shows the x-coordinate displacement
with respect to each pendulums pivot. The two horizon-
tal lines represent each pendulums respective walls.

4 Conclusion

In this paper, a framework has been presented for simu-
lation of coupled systems by aggregation. Care needs to
be taken when a coupled system contains feed-through as
an equation system needs to be solved in order to com-
pute the derivatives of the system. This puts a condition
on the sub-system feed-through terms that also presents
itself when computing the Jacobian.

The sub-system events are handled by aggregation.
A benefit of this approach is that events from all sub-
systems together with external events can be monitored
at once and handled through the aggregated system. Ex-
ample described in Section 3.3 shows that external events
can be added to an aggregated coupled system.

The FMI has all functionality needed to carry out the
presented scheme. By combining the discussed ideas
with Assimulo and allowing direct coupling of FMUs
and Python based problems one gets a flexible and pow-
erful environment for solving coupled dynamical prob-
lems.

Coupling Model Exchange FMUs for Aggregated Simulation by Open Source Tools

908 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118903

References

Christian Andersson. A Software Framework for Implementa-

tion and Evaluation of Co-Simulation Algorithms. Licenti-
ate thesis, Centre for Mathematical Sciences, Lund Univer-
sity, Lund, Sweden, 2013.

Christian Andersson, Claus Führer, and Johan Åkesson. As-
simulo: A unified framework for ode solvers. Math. Com-

put. Simulat., 2015. doi:10.1016/j.matcom.2015.04.007. In
press.

Torsten Blochwitz, Martin Otter, Johan Åkesson, Mar-
tin Arnold, Christoph Clauss, Hilding Elmqvist, Markus
Friedrich, Andreas Junghanns, Jakob Mauss, Dietmar
Neumerkel, Hans Olsson, and Antoine Viel. Functional
mockup interface 2.0: The standard for tool independent ex-
change of simulation models. In In 9th International Mod-

elica Conference 2012. Modelica Association, 2012.

Dassault Systèmes. Dymola - Multi-Engineering Modeling
and Simulation - Version 2016. http://www.dymola.
com/, 2016. Accessed: 2015-08-01.

Edda Eich-Soelner and Claus Führer. Numerical Methods in

Multibody Dynamics. European Consortium for Mathemat-
ics in Industry (ECMI). Teubner, 1998. ISBN 3-519-02601-
5.

Emil Fredriksson, Christian Andersson, and Johan Åkesson.
Discontinuities handled with events in Assimulo. In Hu-
bertus Tummescheit and Karl-Erik Årzén, editors, Proceed-

ings of the 10th International Modelica Conference, num-
ber 96 in Linköping Electronic Conference Proceedings,
pages 827–836. Linköping University Electronic Press,
Linköpings universitet, 2014. URL http://dx.doi.

org/10.3384/ECP14096827.

Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L.
Lee, Radu Serban, Dan E. Shumaker, and Carol S.
Woodward. Sundials: Suite of nonlinear and differ-
ential/algebraic equation solvers. ACM Trans. Math.

Softw., 31(3):363–396, September 2005. ISSN 0098-3500.
doi:10.1145/1089014.1089020.

Johan Åkesson, Karl-Erik Årzén, Magnus Gäfvert, Tove
Bergdahl, and Hubertus Tummescheit. Modeling and opti-
mization with Optimica and JModelica.org—languages and
tools for solving large-scale dynamic optimization problem.
Comput. Chem. Eng., 34(11):1737–1749, November 2010.
doi:http://dx.doi.org/10.1016/j.compchemeng.2009.11.011.

Poster Session

DOI
10.3384/ecp15118903

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

909

