Integrated Engineering based on Modelica

1

Andreas Hofmann! Nils Menager!

Issam Belhaj”> Lars Mikelsons'

1BOSChRexr()thAG,Germany,{andreas.hofmann7,nils.menager,
lars.mikelsons}@boschrexroth.de

2Dassault Systemes, France,

Abstract

The academic society claims the use of virtual engineer-
ing (i.e. simulation) since many years. Nevertheless, it is
de facto rarely ever used in the automation industry. This
paper presents an approach and a toolchain for an in-
tegrated, digital engineering workflow including virtual
commissioning, shown at a real industrial example. In
particular, a new method for virtual commissioning that
allows to drop all real-time requirements is presented.

Cyber-physical production systems rising with the
concepts of industry 4.0 have a complexity that conven-
tional engineering methods cannot bear. Therefore, the
time has come to finally use model-based systems en-
gineering methodologies that were proposed years ago,
e.g. (Verein Deutscher Ingnieure (2004)). Nevertheless,
the automation industry acts very conservative towards
new technology. This is mainly due to the distrust that
model-based methods can be used in an economic man-
ner. Within the development cycle in the automation in-
dustry CAD models are used, since they save costs com-
pared to construction by hand. During other stages of
the development cycle, virtual models are considered to
be of little or no use, since the effort for modeling those
images of real systems is assumed to excel the benefits.
This prejudice can only be overcome by lowering the ef-
fort for modeling or increasing the value of generated
models.

In this paper models generated in early development
phases are re-utilized within later stages of the devel-
opment cycle, like application engineering and commis-
sioning. The re-use of models for virtual commission-
ing is in particular possible due to coupling of a Rexroth
PLC and a (possibly non real-time) Modelica simulation
using a new Modelica library. In order to obtain an devel-
opment cycle that is as integrated as possible, transitions
between different phases in the development cycle are
tackled. First, starting with CAD data it is shown how
to automatically generate a physical representation of a
machinery in Modelica. Using the physical interfaces
of Modelica the model can easily be extended by drive
models from component manufacturers. In combination

Issam.Belhaj@3ds.com

with Bosch Rexroth PLCs, a transition towards the com-
missioning phase without further adaptions (e.g. com-
plexity reduction for real-time application) is possible
employing a new Modelica library. To show the entire
potential of an integrated engineering workflow based on
Modelica, an approach for creating control code based
on a Modelica model of the control algorithm is given.
By demonstrating those methods in the industrial appli-
cation example of a bottling machine, it is disclosed that
the assumptions of a high effort for creating simulation
models, as mentioned introductory, can be disproved.
Keywords: integrated engineering, virtual commission-
ing, code generation, RFLP

1 Introduction

1.1 Motivation

Industry 4.0 is the central topic in automation indus-
try. Controlled plants are replaced by highly automated,
networking and self-regulating cyber-physical systems.
Conventional development methods do not match for this
complexity. Instead, those new rising challenges need to
be faced by new product development methods.

Model-based System Engineering is something very
natural. Before building a machine or more general
a technical system in nearly every case a model is set
up. However, in the automation industry in many cases
this model is a mind model rather than a virtual model.
Clearly, most of the benefits that apply for virtual models
also hold for mind models, but to a lower extend. Thus
the benefits of simulation (low cost experiments, avail-
able at any time, ...) are well known and highly valued,
but the effort for virtual modeling is estimated higher
than the saving in time.

Within a typical development cycle in the automation
industry, simulation models are used for the 3D design.
However, during the dimensioning of suitable compo-
nents simulation is utilized only sometimes. During the
control design of the complete system virtual models are
hardly ever used. The reason for using models for the

DOI
10.3384/ecp15118893

Proceedings of the 11** International Modelica Conference
September 21-23, 2015, Versailles, France

893

Integrated Engineering based on Modelica

design is quite obvious; using a CAD software clearly
saves a lot of time compared to construction with pencil
and paper. Nevertheless, a dynamic model helps to avoid
over-dimensioning and thus may save costs. Last but not
least usually it is not worth the effort setting up a model
for control design.

Within the automation industry simulation will only
earn its space if the benefits, i.e. the savings in time at
last, outperforms the effort that is required for creating
virtual images of the technical system. Currently, the
effort for modeling is felt as very high, because every
role in the development cycle models start from scratch.
Models from other engineering phases are not re-used,
sometimes even models from other engineering disci-
plines are ignored. Nevertheless, in order to successfully
develop those cyber-physical systems that are rising as
mentioned initially, an interaction of the different physi-
cal domains is required.

By extensive recycling of simulation models the cost
for developing those virtual images can be reduced sig-
nificantly. Utilizing Modelica as modeling language ren-
ders this re-use possible. Models can not only be trans-
ferred and used between different domains easily. Mod-
elica also, since it is a describing language that needs
a compiler to generate executable code anyway, can be
used as basis for code generation for hardware targets
like PLCs. Through its open interfaces it is also possible
to include external libraries that provide features further
than for dimensioning of a machinery. The models can
also be re-used for virtual commissioning in coupling
with real industry controls.

By integrating Modelica in the model-based sys-
tem engineering methods, like the RFLP approach,
a distinct improvement towards willingness to simu-
late of the automation industry can be made. Das-
sault Systemes 3DEXPERIENCE platform (3DXP), see
(Dassault Systemes (2015)), that incorporates the RFLP
approach in combination with Modelica, allows on the
one hand to work with a clearly structured cross-domain
development process and on the other hand renders the
re-use of simulation models and the extend of model-
based engineering towards the stages of application en-
gineering and virtual commissioning possible.

1.2 Outline

In the following section a short overview about the RFLP
approach is given. Although this method alone is not
suitable lowering the perceived effort for creating vir-
tual models, using Modelica as modeling language al-
lows to extend the benefits, especially for automation in-
dustry. Section 3 focuses on the area of code generation
for PLCs based on Modelica models. After a general
definition of code generation is given and possible fields

of application are discussed, a toolchain is presented,
which can be used to execute arbitrary C/C++ code on a
Rexroth PLC. The subsequent chapter addresses the idea
of virtual commissioning. Basic concepts are described
and a new approach with focus on model-based system
engineering is given. In section 5, the previously de-
scribed technologies are combined in an example. Start-
ing from CAD, the approach of integrated model-based
engineering is shown for a bottling machine. In the last
chapter the integrated engineering methodology is sum-
marized and the paper is closed with an outlook about
further development.

2 The RFLP Approach

During the process of product development, nowadays,
several disciplines interact with each other. Since it is
difficult to manage such concurrent multidisciplinary en-
gineering processes it is necessary to provide products
that meet the customer requirements or to create a struc-
tured development process in order to integrate all the
disciplines and specialty groups into a coherent team
effort. The RFLP approach, c.f. (Kleiner and Kramer
(2013)) (Requirements engineering, Functional design,
Logical design, Physical design) as system engineering
process based on the V-cycle design process, see Figure
1, permits to simplify matters by defining a system based
on its fundamental aspects through essential views and
their relations.

Product

Needs Systems Engineering tiaadsar

Specification Design Implementation

Figure 1. The steps of RFLP within the V-cycle design pro-
cess.

Facilitating cross discipline communication between
customers, different engineering departments, partners
and suppliers, the RFLP approach provides a common
view to all. RFLP ensures traceability and provides deci-
sion support in a highly collaborative environment. Fur-
thermore, this methodology ensures that the final prod-
ucts meet the customers requirements in a cost effective,
timely and qualitatively efficient way.

Within the requirement engineering customer and
stakeholder needs are defined. Characteristics and activi-
ties the system has to satisfy are concentrated. Hence, the

894

Proceedings of the 11*" International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118893

Poster Session

approach permits following the life cycle of each require-
ment and validating each step of the engineering process.
Additionally, requirements that contain physical quanti-
ties can be directly linked to those models of functional
design, in which their implementation is intended.

In the functional design phase all capabilities of the
technical system are decomposed into elementary func-
tions. The intention of the technical system is formal-
ized into a structure that can be allocated to technical
solutions. Behavior models can be part of the functional
design defining how components transform inputs to out-
puts. Thereby, a validation of requirements is rendered
possible.

From the functional decomposition the logical archi-
tecture of the technical system is derived in the logical
design phase. Different technological solutions corre-
sponding to required functions are analyzed and com-
pared during this step. Each technical solution is based
on subsystems, components and their interfaces accord-
ing to the technical requirements, customer needs and
expected functions. Like in the functional design phase,
behavior models can also be embedded into each logi-
cal component. The logical design is the main structure
during the conceptional phase. Based on modular defi-
nitions, all different engineering disciplines are brought
together.

Within the physical design, an entire virtual represen-
tation of the real technical system is modeled. The log-
ical components are expanded by the dynamic charac-
teristics. Mechanical models are for instance established
with CAD, wires can be included, electrical drive behav-
ior imaged or hydraulic flow represented. Eventually, the
behavior of the holistic, complete cross-domain techni-
cal system can be verified against the requirements, that
were defined during the requirement engineering.

2.1 3DEXPERIENCE Platform

Although RFLP can support to keep the product devel-
opment cycle of a technical system clearly arranged, the
limitations of virtual models that were initially intro-
duced still remain. Furthermore, the re-use of models
especially in the logical and physical phase can be diffi-
cult, if no elementary interfaces are given.

Dassault Systemes incorporates the RFLP approach
within their Business experience platform 3DXP. Since
this tool provides all the different steps of product devel-
opment, the interface issue between the different steps
of RFLP vanishes. Furthermore, 3DXP uses Modelica
for the logical and physical modeling of the technical
system. This allows on the one hand to re-use the cre-
ated connections from the logical model to the physical
model and on the other hand an integration of differ-
ent domains can be easily performed, since Modelica is

the most sophisticated modeling language for modeling
complex cross-domain physical models.

2.2 Extending 3DXP towards an holistic
model-based engineering

Apart from the previously stated advantages of RFLP
over the product development process, the integration
of Modelica offers further possibilities. As described at
the beginning, effort for creating virtual models hinders
many customers from automation industry to use those
methods. However, this effort can be significantly re-
duced by expanding the use of virtual models and by re-
utilizing simulation models for this enhancements. Es-
pecially in the automation industry, where the area of ap-
plication engineering and commissioning are one main
focus during development, simulation offers vast bene-
fits.

3 Code generation

This section deals with code generation as a character-
istic of model-based engineering. In the first part, the
definition and important fields of application are dis-
cussed. After that, a toolchain to use code generation
with Rexroth industrial controllers is presented.

3.1 Definition and fields of application

To realize an integrated model-based development, code
generation out of simulation models is one important key
feature. Code generation allows the transfer of knowl-
edge from one development phase into following ones,
e.g. between the system design and the commission-
ing. This technique makes it possible to re-use informa-
tion, which is already available during the design phase
and generally stored in a simulation model, during the
commissioning. Generated code can be used for various
fields of application.

The most common one is Rapid Control Prototyping.
Nowadays, new technical systems are, in a first step,
mostly designed virtually using modeling and simula-
tion. Therefore, a simulation model of the system is set
up inside a simulation environment. To investigate the
dynamical behaviour of the plant, a control algorithm
is added inside the simulation environment. After the
system is completely designed and tested virtually, these
models are in general not used any further. Instead, the
control algorithm is re-implemented from scratch using
PLC programming languages. Besides the fact, that a
re-implementation needs additional time and therefore
causes costs, it is always a potential error source. These
disadvantages can be avoided, if the already existing con-
troller inside the simulation model is re-used. This can

DOI
10.3384/ecp15118893

Proceedings of the 11** International Modelica Conference
September 21-23, 2015, Versailles, France

895

Integrated Engineering based on Modelica

be realized by generating code out of the model and exe-
cuting it on the PLC.

Besides the use of controller models on the PLC, it
is also possible to use plant models on the PLC. One
field of application is model-based diagnosis. The plant
model is simulated in parallel to the operation of the ma-
chine. The model is used to calculate the expected dy-
namical behaviour of the machine, while the actual be-
haviour is gathered using sensors. As soon as differences
between the calculated and measured values occur, this
may refer to an error inside the machine. In case, that
special error models are available, even the specific error
type might be determined.

Code generation out of plant models can also be used
for modern control strategies like Model Predictive Con-
trol. Model Predictive Control solves an optimal control
problem (dynamic optimization problem) in every cycle
online on the controller. The differential equations of
the system, which are included in the model, are used
as constraints of the optimization problem. The solution
of the problem is an optimal input on the system in the
next time step and minimizes a user-defined cost func-
tion, which includes the control aim.

Modelica models are perfectly suitable for code gener-
ation. As Modelica is a describing language, a compiler
is needed to generate executable code. If the commercial
Dymola compiler is used, C code is generated. In case of
the OpenModelica compiler, both, C and C++ code, can
be selected. While the Dymola code generation is a black
box and can therefore not be modified, the code genera-
tion inside the OpenModelica compiler is template-based
and can be easily adapted. This allows to generate spe-
cific code even for different hardware targets.

3.2 Toolchain for code generation using the
OpenModelica compiler

Bosch Rexroth has an own code generation module in-
side the OpenModelica compiler, which generates C++
code. Using a flag, it is possible to generate code for
specific industrial PLCs (e.g. IndraControl XM22). In
comparison to an offline simulation, several functions of
the application programming interface (API) of the con-
troller have to be integrated into the code. The generated
code contains only the model. Additional information,
how the occuring model equations should be solved, is
not included in the model. Therefore, a simulation run-
time is necessary. This runtime includes the numerical
integration methods and manages the entire simulation,
e.g. handles occuring events. Bosch Rexroth developes
also a runtime, written in C++, which supports the simu-
lation of models generated from OpenModelica.

For the execution of Modelica models on industrial
controllers, a toolchain is available, see (Menager et al.
(2015)). This toolchain uses the OpenModelica com-
piler, which generates C++ code as described before. To
run this code on the hardware, the code has to be com-
piled for the operating system on the controller. Bosch
Rexroth industrial controllers use VxWorks as real-time
operating system. Hence, to execute the code, a Vx-
Works compiler is needed. In this toolchain, the Win-
dRiver VxWorks compiler is used to compile both, the
model code and the simulation runtime, into a library.
Using the Motion Logic Programming Interface (MLPI),
which is used as interface to the controller, the code can
be simply connected to an existing PLC application. The
integration is realized with a function block, which of-
fers the inputs and outputs for the data exchange between
the executed code and the PLC. Additional information
about MLPI can be found in (Engels and Gabler (2012)).

Of course, not only code generated from the Open-
Modelica compiler can be executed on the PLC. In gen-
eral, any C or C++ code can be run on the hardware.
This includes the C code, which is generated from Dy-
mola. However, this code has to be modified manually
to implement the necessary interfaces of the controller’s
application programming interface.

4 Virtual Commissioning

4.1 Fundamentals of Virtual Commissioning

Up to 25% of the project period of a plant and therefore
a big share of the costs are needed for commissioning.
Especially troubleshooting of controller application soft-
ware dominates this part of the engineering process, see
Figure 2.

project period commissioning process control

15-25%

Figure 2. Amount of commissioning time on product develop-
ment period, based on (VDW (1997))

Although software is a central issue already, com-
missioning times will most likely increase with Industry
4.0. The rise of connected, highly automated and cyber-
physical systems will increase the number of software
parts within a plant and thus have significant impact on
commissioning times. This is, on the one hand, based
on growing contents of software in mechanical and au-
tomation industry as well as horizontal and vertical net-
working, cf. (BMBF, 2013). On the other hand increas-

896

Proceedings of the 11*" International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118893

Poster Session

procedure
withouth
VC
desi produ
procedure esign | asse savin
with VC in time
time
>
e —
effort benefit

Figure 3. The basic idea of virtual commissioning, based on
(Wiinsch (2008))

ing complexity of software projects will also lead to ris-
ing commissioning times. The method of virtual com-
missioning can help reduce commissioning times signif-
icantly.

In this context virtual commissioning (VC) is under-
stood as a method for testing functionality respectively
operation sequence of a plant with the assistance of a
model of the system. Basic idea of the VC is the cou-
pling of the simulation model to a real or virtual control.
Using simulation, the operability of the control applica-
tion can be checked in early stages of the development.
Software errors can be eliminated during production and
assembly of the plant and time as well as expenses can
be saved during the real commissioning, see Figure 3.

Furthermore, VC assists to increase the quality of the
control application, c.f. (Wiinsch (2008)). However, in
order to obtain valid results the VC approach has to se-
cure that the deterministic and consistent behavior of the
PLC is represented.

4.2 Interaction between Simulation and Con-
trol

In the area of automation industry VC is typically used
in the context of coupling a simulation model of the
plant to a virtual or real PLC. Hence, the two approaches
Hardware-in-the-Loop (HiL) and Software-in-the-Loop
(SiL) are common.

Software-in-the-Loop describes the coupling of a vir-
tual model of the plant with a virtual image of the con-
trol. Since there is no real hardware control within the
setup, all models can be simulated on the same computer
and no real-time requirements prevail. It follows that ar-
bitrary complex models can be used for this kind of VC
and especially models from previous engineering steps
are suitable. However, this setup does not ensure de-
terministic execution of the control application. A full
check of the system behavior is not possible.

Hardware-in-the-Loop is a VC approach in which a
real PLC is coupled with a simulation model of the plant.
Therefore a real-time bus and a real-time operating sys-
tem is required. Of course the simulation model also has
to satisfy this demands. Hence, models from other stages
of the product development process are not suitable. The
body of acquired knowledge in form of the simulation
model needs to be discarded and a new virtual represen-
tation of the plant is required. Though, in contrast to SiL,
determinism is provided, since the real control is part of
the infrastructure.

In the context of an integrated engineering approach
as stated preliminary, none of the prevalent methods is
eligible. Either the validity of the simulation is not suf-
ficient or simulation models from previous engineering
steps can generally not be used.

4.3 Extending virtual commissioning to-
wards MBSE

Typical coupling strategies are very limited in a simu-
lation based development approach. In order to use VC
within a model-based system engineering approach, both
benefits of SiL. and HiL need to be joined. For Bosch
Rexroth PLCs this can be achieved using their Open-
Core Interface. Bosch Rexroth OpenCore Interface, c.f.
(Bosch Rexroth (2015)), is a universal port with direct
access to the control and motion kernel of Rexroth in-
dustrial controls. With this technology applications can
be written, using high level languages like Java or C++,
that allow to join drive and control systems and conven-
tional IT environments, see (Engels and Gabler (2012)).
For the purpose of virtual commissioning the Open-
Core interface is implemented in Modelica in the library
mlpi4Modelica whic allows to access the control within
a simulation.

Virtual commissioning with Bosch Rexroth PLCs is
based on HilL abrogating the real-time requirements.
This is achieved using the OpenCore technology which
can interact with the motion kernel of the control. This
allows to set the control in some simulation mode and
tasks that are triggered by the motion cycle event, man-
aged by the internal clock of the PLC, are no longer exe-
cuted cyclically. Instead they are activated by an external
trigger signal from the simulation and are launched, pre-
cisely once, during the next motion cycle. Thus the real-
time requirements repeal and the complex infrastructure
with real-time operating system and real-time bus can
be replaced by a general simulation pc and a common
ethernet connection. However, the consistent and deter-
ministic behavior of the control is secured. Triggering
the control from the simulation allows to utilize arbitrary
complex models of the plant, which are in general not
real-time capable.

DOI
10.3384/ecp15118893

Proceedings of the 11** International Modelica Conference
September 21-23, 2015, Versailles, France

897

Integrated Engineering based on Modelica

4.4 Modelica library mlpi4dModelica

The library mlpi4Modelica provides functionality to di-
rectly access Bosch Rexroth PLCs and read as well as
change symbol variables or parameters within the PLC
program. The library itself is divided into three parts.

motionLogicProgramminglnterface in Unnamed (Bl =]

General PLC #1 PLC #2 PLC #3 PLC #4 PLC #5 Add modifiers |

Connection data
ip_1 0.0.0.0°* 1P adress for PLC #1
User-defined login data for target (if not given, default login is used)

userDefined_1 [[] set user-defined login data for PLC #1

user_1 User-defined connection settings for PLC #1

Co e) e

Figure 4. Parameter window of the MotionLogicProgram-
minglnterface model

The first part is a component called MotionLogicPro-
grammingInterface, which creates the connection to the
PLC, c.f. Figure 4 over ethernet connection and thus is
mandatory. Currently up to five industry controls can be
connected. However, this limitation is due to Modeli-
cas GUI-performance and more controls could be easily
added by extending the component.

The second part of the mlpi4Modelica library is rep-
resented by the model mlpiCoupler and the package 10-
Coupler4Modelica. The former serves as a gate, which
uses the connection data from MotionLogicProgram-
minglInterface, and converts the signals into valid in-
formation for the PLC. It also translates the Modelica
datatypes to the required datatypes on the control if pos-
sible. Furthermore, the mlpiCoupler enables/disables the
simulation mode of the control and regulates the trigger
signal. The package IOCoupler4Modelica includes an
analog and a digital interface model, that can be con-
nected to the mlpiCoupler. Within those, for every in-
put and output, the parameter name or symbol variable
name on the control respectively the PLC program is de-
fined. Using the modelica language element connector-
Sizing allows on the one hand to have not linked inputs
and on the other hand to have multiple interface models
connected to the mlpiCoupler, c.f. Figure 5. As a con-
sequence, arbitrary signals can be exchanged with the
PLC.

The last portion of the library is the Library package,
which contains all functions of the OpenCore Interface
that are required for simulation purpose. Those func-
tions, originally written in the language C, are wrapped
within Modelica and allow to write own models that can
access the control or the PLC application. In addition to
this, when using a C/C++ code generation, this renders

’ PressAxis1Angle

OPEN CORE
ENGINEERING

Nt

freqHz=1 L
App_PressCtrl_Speed o

PressLinearAxis1Position

20 [o

App_PressCtr_GainAlpha

13

Figure 5. Example model with use of the mlpiCoupler and two
interface models.

creating of controller modules or even PLC application
directly from the model possible as described in Section
3. It is also depicted in the following section.

5 Application Example

Bottling machines, see Figure 6, serve as good example
for performing the previously described steps and exten-
sions.

Figure 6. Image of the complete bottling machine, consist-
ing of a rinsing machine (1), a filling machine (2), a capping
system (3) and a labeling machine (4).

In this contribution the model-based system engineer-
ing approach is shown for the filling part. However, all
steps are also suitable for the other machines since the
methodology 1is, as stated before, of general purpose.
The challenge in this kind of machinery is to have the
bottle infeed system, the rotary filler and the bottle out-
feed synchronized. Since every part has its own driving
motor, the synchronization has to be performed by the
PLC. However, since each motor has its own position
and velocity control, the interaction has to be further in-
vestigated in order to eliminate errors due to contouring
errors.

5.1 Development of the bottling machine
model

The generation of dynamic models of the machinery is
one big task, that hinders the use of simulation models.
Within 3DXP this problem can be eliminated, at least for
the mechanical part. Having the CAD data of the tech-
nical system available in 3DXP, a mechanical Modelica

898

Proceedings of the 11*" International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118893

Poster Session

model (joints, bodies, e.c.) based on the library CATIA-
MultiBody can be generated, see Figure 7.

Figure 7. 3D model of the infeed system (left) and the gener-
ated Modelica model (right).

Driven joints within the 3D model are represented by
joints with flanges. Therefore, a simple extension of this
mechanical model is possible.

For the filling machine, as described here, the driven
joints are connected to motor models from Bosch
Rexroth, that contain motor specific characteristics, like
torque and motor speed limitations and fine interpolation
that is done by a motor controller.

The whole setup of the dynamic model of the filling
machine can be seen in Figure 8.

outfeed

rotation angle

motorAndControllerAxis3

rotation angle

motorAndControllerAxis2

=
—_—=
i

Ll

»

motorAndControllerAxis1

x | infeed

Figure 8. Dynamic model of the filling machine, divided into
the mechanical model derived from CAD and the Rexroth drive
models.

One can clearly see, that the motor inputs are not con-
nected, at this point. For now, the model needs to be
tested with synthetic stimuli. For the virtual commission-
ing of the complete system later on, it will be coupled to
the real nominal axis values of the PLC and therefore
receive real values.

5.2 Control design for the bottling machine

The control algorithm for the functionality of the bot-
tling machine can be held simple. It consists basically
of the states Initial, Manual, Synchronization, Automatic
and Stop, see Figure 9, and was implemented in Mod-
elica using the new State Machines language elements,
(Modelica Association, 2014), (Elmqvist et al., 2012).

Initial

2: s ==true and m == false

s == false or m == true

s == true and m == frue

Synchonization
2: s == false

Sync == true

Automatic

s == false or m == false

Power == false

Figure 9. State machine of the bottling machine.

The transitions between the individual states are
switched depending on the values of the boolean vari-
ables start and automaticMode.

State Initial

This state is active during boot up of the machinery and
stays active until a transition either to State Manual (start
== true && automaticMode == false) or State Synchro-
nization (start == true && automaticMode == true) ap-
plies. Within this state, all three axis (infeed, filler and
outfeed) of the filling machine keep in a resting position.

State Stop
Whenever the machine is running, either in state Man-
ual, Automatic or Synchronization and a change to

DOI
10.3384/ecp15118893

Proceedings of the 11** International Modelica Conference
September 21-23, 2015, Versailles, France

899

Integrated Engineering based on Modelica

any other running state or State Stop is applied, the
State Stop is reached. All running axes are shut down.
Switchover from State Manual (automaticMode == true ||
start == false) or State Synchronization (automaticMode
== true |l start == false) does shut down all axes indi-
vidually. Transition from State Automatic (automatic-
Mode == false Il start == false) decelerates all shafts syn-
chronously. After all axis remain in a resting position,
the state automatically changes to state Initial.

State Manual

Within state Manual, all three axes of the bottle filling
machine can be individually moved, depending on the
values of boolean variables axisInfeed, axisFiller and ax-
isOutfeed in combination with a real variable manual-
Speed. This can be useful for manual positioning or test-
ing of desired motor speeds.

State Synchronization and State Automatic

If the State changes from Initial to Synchronization, all
Axis are moved to a synchronized position and the active
state changes to State Automatic. Within the latter, all
axis are accelerated in sync to a desired speed. This state
represents the normal production of bottles.

All movements of axes that have been described pre-
viously are implemented using the Modelica library
mlpi4Modelica. As a result, the complete state machine
model can be used directly as a model for the real PLC.
After generating C-Code from a model the compiled
code can be transferred to the PLC as object program.
In order to change values on the variables, e.g. manual-
Speed, some functions block are created, see 3.

5.3 Virtual commissioning of the plant

In order to validate the behavior of the previously de-
scribed controller algorithm and to examine the contour-
ing error, that might inhibit a valid synchronization, the
dynamic model is coupled to the real PLC. The inter-
connection is realized by the components of the library
mlpi4Modelica, as described in section 4.

The output values from the mlpiCoupler are the axis
nominal values that are calculated internally by the PLC.
Those values are input for the internal interpolation of
the drive models (motor and motor controller) from
Bosch Rexroth. Their output torque drives the different
mechanical parts of the filling machine. For synchro-
nization the current angle of each axis is transferred to
the PLC, see Figure 10.

After fully parametrizing the drive controller, the con-
touring error stays below a permitted deviation and the
synchronization is not inhibited, c.f. Figure 11. Also the
controller application module that was generated from
the state machine model is working properly.

filler

y

t

infeed

Figure 10. The complete dynamic model of the filling machine
during virtual commissioning phase.

Figure 11. Filling machine in synchronized motion.

6 Conclusion and Outlook

The re-use of simulation models offers huge potentials.
Utilizing those models in multiple phases of the product
development cycle enhances productivity and reduces
costs as well as time. Of course, the effort for creat-
ing the virtual images of a technical system remains.
However, compared to the additional benefits that are
available at no cost, this effort loses significance. Us-
ing Modelica as modeling language within the RFLP ap-
proach renders those enhancements of model use over
the whole development cycle possible. In this contribu-
tion, code generation is used to create controller modules
or whole PLC applications from simulation models. Fur-
thermore, using the simulation model of the plant instead
of the real machinery, the commissioning can be per-
formed virtually without having produced any part yet.
This is demonstrated using a bottling machine. Starting
from the requirements and functional model of the plant,
the steps of dynamic model generation, control code de-
velopment from simulation model and virtual commis-
sioning are described.

The benefit of simulation models does not reach the
end of the line with commissioning. Since control code

900

Proceedings of the 11*" International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118893

Poster Session

can be generated from the Modelica model, it is also pos-
sible to run the simulation model on the controller during
production. This enables features like model-based diag-
nosis or model predictive control. Also the generation of
complex robot transformations which are elaborately de-
rived by hand, can be automated using simulation models
and Modelica.

References

BMBF. Umsetzungsempfehlung fiir das Zukunftsprojekt Indus-
trie 4.0. German Feder Ministry of Education and Research,
2013.

Bosch Rexroth. Engineering Network: community for soft-
ware developers. http://www.boschrexroth.com/
network, 2015. Accessed 19-May-2015.

Dassault Systemes. 3DEXPERIENCE plat-
form. http://www.3ds.com/about-3ds/
3dexperience-platform/, 2015. Accessed 19-
May-2015.

Hilding Elmqvist, Fabien Gaucher, Sven Erik Mattsson, and
Francois Dupont. State machines in modelica. Proceedings
of 9th International Modelica Conference, 2012.

Elmar Engels and Thomas Gabler. Universelle Programmier-
schnittstelle fiir Motion-Logic Systeme : Struktur, Funktio-
nen und Anwendung in der Forschung und Lehre. Tagungs-
band AALE 2012, 2012.

Sven Kleiner and Christoph Kramer. Model Based Design with
Systems Engineering Based on RFLP Using V6. Proceed-
ings of the 23rd CIRP Design Conferenc, 2013.

Nils Menager, Lars Mikelsons, and Niklas Worschech. Model-
based engineering using Rexroth controllers and open stan-
dards. Tagungsband Mechatronik 2015, 2015.

Modelica Association. Modelica language specification 3.3 re-
vision 1, 2014.

VDW. VDW-Bericht: Abteilungsiibergreifende Projektierung
komplexer Maschinen und Anlagen. WZL, 1997.

Verein Deutscher Ingnieure. VDI 2206: Entwick-
lungsmethodik fiir mechatronische Systeme, 2004.

Georg Wiinsch. Methoden fiir virtuelle Inbetriebnahme au-
tomatisierter Produktionssysteme. Herbert Utz Verlag,
2008.

DOI Proceedings of the 11** International Modelica Conference
10.3384/ecp15118893 September 21-23, 2015, Versailles, France

901

