
Suitability of Different Real-Time Solvers for a Model-Based

Engineering Toolchain using Industrial Rexroth Controllers

Nils Menager1 Rüdiger Kampfmann1 Niklas Worschech1 Lars Mikelsons1

1Bosch Rexroth AG, Lohr a. Main, Germany {nils.menager, fixed-term.ruediger.kampfmann,

niklas.worschech, lars.mikelsons}@boschrexroth.de

Abstract

Due to the increasing complexity of technical systems,
model-based engineering is getting more and more im-
portant during the development process of new products.
The code generation from models and the usage of this
code on hardware targets is one important feature of
model-based development. To execute this code on the
hardware device, a simulation runtime is additionally
required, which offers numerical methods to solve the
model equations. To use generated code on a controller,
the simulation has to be executed in real-time, which
is a huge requirement for the solver. In this work, a
Modelica-based open source toolchain for model-based
engineering with Rexroth controllers is presented, which
is used for virtual commissioning of a typical hydro-
mechanical system on a standard Rexroth PLC. There-
fore, instead of parameterizing the controller directly on
the real system, the control algorithm on the PLC is con-
nected to the system model, which is additionally exe-
cuted on the controller in parallel to the existing PLC
application. Doing this, the commissioning times can be
reduced significantly, as the commissioning process can
already be started during the build-up of the system using
a simulation model of the system. As hydro-mechanical
systems are in general mathematically stiff, the choice of
the solver for the system model equations is not arbitrary.
In this work, five different real-time solvers, beginning
with a simple explicit Euler through to more complex
linearly implicit methods, are tested on a single hydraulic
axis. Furthermore, typical issues like state events as well
as algebraic loops are discussed in context of real-time
simulation requirements.

Keywords: Real-time simulation, Modelica, Hardware-

In-The-Loop, code generation, model-based engineer-

ing, real-time solver

1 Introduction

The increasing complexity of technical systems nowa-
days requires a change from conventional development
methods towards model-based engineering. This means,

that the entire development process through to the com-
missioning of the system is supported by models. A
consistent application of this approach reduces time and
costs, for example by shorter iterations and avoiding
multiple implementations. An important component of
model-based engineering is code generation, meaning
the generation of code out of simulation and engineer-
ing tools.

The generated code can be used for different fields of
application. One important field is Rapid Control Proto-
typing. During the development process of a new tech-
nical system, generally, a simulation model of the plant
and the controller is set up inside a simulation environ-
ment. Later, during the commissioning of the system,
the control algorithm has to be implemented on the hard-
ware controller. Here, until now, the existing model is
not used any further. Instead, the controller architecture
is implemented from scratch inside the development en-
vironment of the controller, which leads to some serious
drawbacks. First, a re-implementation of existing code
always means extra time and costs, which are not neces-
sary. Second, as the existing code is re-implemented in
another language (mostly PLC programming languages),
it cannot be guaranteed, that the newly implemented con-
troller behaves in the same way as the previously de-
signed controller inside the simulation environment. Of
course, a re-implementation of code always means a po-
tential error source. To avoid these disadvantages, it is
desirable to use the already existing model also on the
hardware controller. This can be realized by generating
code from the controller model.

Besides the use of controller models directly as con-
troller on a hardware PLC, there are several other fields
of application to use simulation models on industrial
controller hardware. One is the usage of simulation mod-
els in parallel to the control algorithm on the controller
for system diagnosis. The difference between the sim-
ulated behavior and a measurement on the real system
may imply different errors inside the real system.

Furthermore, it is possible to detect even upcoming er-
rors, which can reduce downtimes of systems and hence

DOI
10.3384/ecp15118883

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

883



reduces costs. It is imaginable to use the simulation
model also for the control of the system using modern
control strategies like Model Predictive Control. Here,
with help of a dynamic model, which is set up during the
development process anyway, the future behavior of the
system is precalculated. This precalculation, in combi-
nation of a measurement of the current system behavior,
is then used to determine an optimal control input to the
system for the next time step.

There are already possibilities to generate code from
simulation models and to run this code on real-time
targets, for example using a toolchain based on MAT-
LAB/Simulink. For Bosch Rexroth, this toolchain has
some serious disadvantages. One is the fact, that the for-
mer described toolchain causes high costs due to the li-
cence fees. Standard Rexroth customers have often no
possibility to buy the software, which means that this
toolchain is not accessible for them. Furthermore, the
code generation module of Simulink is a black box. It is
not possible to modify the code generation, for example
if already existing basic functions (e.g. from an applica-
tion programming interface) of the controller should di-
rectly be integrated into the generated code. Another dis-
advantage is the release frequency of MATLAB/Simulink
(in general two new releases per year). As it remains un-
clear, whether there were changes inside the code gener-
ation module, all existing models have to be tested again
with every new release of MATLAB/Simulink.

To avoid the disadvantages of the Simulink toolchain,
an alternative toolchain based on Modelica models has
been developed. This toolchain allows the user to exe-
cute Modelica models directly on Rexroth control hard-
ware. To run the models on the controller, a simulation
runtime is additionally necessary. Bosch Rexroth devel-
opes an own simulation runtime, written in C++. The
simulation runtime manages the simulation, includes the
numerical methods to solve the equations, is responsible
for the data handling during the simulation and handles
occuring events.

As the models should, for example, be used to control
systems on real hardware targets, it is mandatory to run
the execution of the controller model in real-time. The
real-time simulation of a model is a huge requirement
for the solver, as most of the common numerical meth-
ods (implicit methods like CVode and Radau) to solve the
occuring equations cannot be used anymore, as they con-
tain iterative elements, which make the execution time
non-predictable. Hence, in this work, it is investigated,
which numerical methods are suitable to simulate hydro-
mechanical systems, which are in general mathemati-
cally stiff, under consideration of real-time requirements.
Therefore, five different numerical ODE solver are com-
pared regarding the suitability and accuracy of the solu-
tion.

1.1 Outline of this paper

This paper is structured as follows. In the second sec-
tion, the toolchain for model-based engineering using
Modelica models is described. The third chapter deals
with numerical methods for real-time simulation. In
this chapter, a short mathematical background on the
methods is given. In the fourth chapter, a virtual com-
missioning of a commonly occuring hydro-mechanical
system (single axis system) is performed on a Bosch
Rexroth XM22 industrial controller. Therefore, the sim-
ulation model of the system is executed in parallel to the
controller code on the PLC. This is realized using the
toolchain described before. It is investigated, which of
the real-time solver presented in chapter 3 can be used to
simulate the system properly. The fifth section summa-
rizes the results of the application on the test example and
rates the different solver regarding their suitability for
real-time simulations on industrial hardware controllers.
This contribution ends with an outlook on further inves-
tigations.

2 Toolchain for model-based engi-

neering

As already described in the introduction, one main
toolchain used for model-based engineering is based on
MATLAB/Simulink for the code-generation. Customers
of small and medium-sized enterprises have often no
possibility to use MATLAB/Simulink due to high licence
fees. Furthermore, a toolchain based on a commercial
tool has the disadvantage, that the models are in general
encapsulated inside this tool. For an integrated, model-
based engineering it is necessary to exchange models
with other tools. Therefore, a tool independent de-
scription language is essential. Hence, an alternative
toolchain has been developed. The requirements on this
toolchain are discussed in the following section, while
the realization of this toolchain is described after that.

2.1 Requirements on the toolchain

Bosch Rexroth offers both controller for industrial (e.g.
Rexroth IndraControl XM22) and mobile (e.g. BODAS
RC controller) applications. Hence, one requirement for
the toolchain is to support both controller types without
modifications on the controller. Further requirements re-
sult from the disadvantages already discussed in the in-
troduction. The code generation should be modifiable
and offer the possibility to add existing functions to the
generated code. Additionally, the toolchain should not
be mainly based on commercial tools, but on open stan-
dards. This is necessary to avoid external dependencies.
Last but not least, the toolchain should be easy to use, so
that engineers can intuitively make use of it.

Suitability of Different Real-Time Solvers for a Model-Based Engineering Toolchain using Industrial Rexroth
Controllers

884 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118883



Modelica Model OpenModelica Compiler

IndraWorksIndraControl XM22

WindRiver
Workbench

Figure 1. Structure of the Modelica-based toolchain

2.2 Realization of the toolchain

To avoid high costs and to allow an easy and uncompli-
cated re-use of models, the developed toolchain is based
on Modelica models. Modelica is a modelling language,
therefore, to generate executable code, a Modelica com-
piler is necessary. There exist both commercial (e.g. Dy-
mola) and open source (e.g. OpenModelica) compiler. In
this toolchain, of course, the open source OpenModelica
compiler is used. One part of the compiler is the code
generation. At this point, Bosch Rexroth has an own
C++ code-generation. As this code generation module
is self-written, it can easily be modified, for example if
existing C/C++ libraries of the hardware should be used.

The generated C++-code from the code generation
contains only the model. In order to execute this model,
a simulation runtime is needed. The simulation runtime
contains the numerical methods to solve the model equa-
tions and manages the simulation. This simulation run-
time is also developed at Bosch Rexroth. Hence, it di-
rectly supports the generated code from the OpenModel-
ica compiler. Both parts, the generated C++ code of the
model and the C++ code of the simulation runtime, have
then to be compiled for the control target. Therefore, a
second compiler is needed. Each controller type, the in-
dustrial and the mobile controller, has its own operating
system. Thus, a hardware-specific compiler is necessary.

The industrial controller used in this contribution is a
Rexroth IndraControl XM22. This hardware is equipped
with an Intel Atom x86 processor (1300 MHz). It works
with the real-time operating system VxWorks. To gen-
erate executable code for this OS, the Windriver Work-
bench compiler is used. Using the Windriver Workbench
compiler, both, the generated model code and the sim-
ulation runtime are compiled into a library, which is
then, using the functionality of the Motion Logic Pro-

gramming Interface (Engels and Gabler (2012)), inte-
grated into a PLC project. The MLPI is an in-house
developed interface (available in different languages as
C/C++, C#, LabView, Matlab) to access controller func-

tionalities from outside. This includes for example read-
ing/writing controller parameters and variables, starting
and stopping applications, triggering tasks or executing
motion commands. Additionally, MLPI can be used
to link externally implemented code to a PLC function
block. For setting up Rexroth industrial PLCs, Indra-

Works as development platform is used. The function
block has input and output variables, which allow the
data exchange between the simulation model and the
PLC program. The PLC project running on the controller
may then contain different function blocks, some of them
implemented in IEC 61131 code and some of them im-
plemented in C/C++. The structure of the toolchain is
shown in Figure 1.

The basis of the mobile controller is the TriCore chip.
Executable code for this target can be generated using
the HighTec TriCore compiler. It is necessary to use a
C-API, which contains all the essential functions needed
for e.g. creating tasks or apply programs to tasks. The
C-API and both, the generated code from the model and
the simulation runtime, are compiled into a .hex-file us-
ing the HighTec TriCore compiler. This file can then be
flashed onto the device using the development platform
BODAS service.

Note, that this toolchain fulfills all the requirements
discussed before. Due to the usage of the open source
OpenModelica compiler, the toolchain is less cost-
intensive. Furthermore, it is fully compatible to the
main controller types (industrial and mobile controller)
available at Bosch Rexroth without any modifications on
the hardware. Because of the own in-house developed
code generation module and simulation runtime, needed
changes, for example to use already existing external li-
braries, can easily be integrated. As the generated code is
integrated into the existing development platforms of the
controller, the engineer can keep on working in his famil-
iar tool, e.g. in case of the industrial controller, the gener-
ated code is simply connected to a function block instead
of programming the code in IEC 61131 languages. All
features of the development platform, like diagnosis or
visualization features, can be used in its entirety.

3 Introduction on numerical real-

time solver

The main focus in the development of ODE solvers,
which are suitable for industrial problems, was to re-
duce the average computation time, while maintaining
accuracy and robustness. Therefore, the widely spread
solvers like Dassl or Radau use techniques like adap-
tive step-size control, i.e. only using small stepsizes,
when necessary, or updating the Jacobian only, when
convergence fails. This yields robust as well as effective
solvers.

Poster Session

DOI
10.3384/ecp15118883

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

885



Unfortunately, the requirements for a real-time solver
are tremendously different. A solver of this kind has to
guarantee that one timestep is always finished in limited
time, i.e the real-time cycle. Thus always the worst case
runtime has to be considered. If a small stepsize is re-
quired at a certain step, for example in order to maintain
stability, this stepsize can be used everywhere, because
the real-time solver has to provide enough computation
time for the smallest required stepsize. With the same ar-
guments the Jacobian, if needed in the algorithm, can be
updated in every step. But there still remains a problem:
the common, i.e. implicit, solvers also require solving of
at least one nonlinear system. These systems require an
iterative algorithm like Newton’s method. Unfortunately,
convergence in a certain number of iterations cannot be
guaranteed.

Hence summing up all requirements, a real-time
solver is a fixed step solver without nonlinear systems.
Obviously, explicit Runge-Kutta methods fullfill these
requirements. Thus the easiest deputy of that family, the
Euler forward, is one of the most spread solvers for real-
time simulation. Unfortunately, explicit methods come
along with limited stability issues. This is especially a
problem while dealing with stiff systems, for example
hydro-mechanical problems. In section 4 it is investi-
gated, whether they can deal with a hydraulic single axis.
Therefore, the forward Euler and the classical 4th-order
Runge Kutta are tested. Additionally highly stable meth-
ods for real-time simulation are needed, in order to han-
dle stiff problems. Usually implicit Runge Kutta meth-
ods come along with good stability issues, but also with
nonlinear systems (Cellier and Kofman (2006)).

Linearizing the Runge Kutta methods yields the fam-
ily of Rosenbrock methods, also known as linear implicit
Runge Kutta methods. They exhibit the same stability
properties, while avoiding nonlinear systems. In the next
subchapter a short overview of the methods used is given.

Further problems for real-time solvers are algebraic
loops and events, because they can also require iterative
algorithms. State events are discussed in the following
sections. Nonlinear algebraic loops always require itera-
tive algorithms like Newton’s method. This means that a
worst case runtime cannot be guaranteed anymore. Thus
the models simulated in this contribution are free of this
kind of problem.

3.1 Rosenbrock methods

For the model equation, given in state space form:

∂y

∂ t
= f (y, t) y

(

t0
)

= y0

f : Rn
×

[

t0,∞
]

→ R
n t0 ∈ R y0 ∈ R

n

The simplest deputy of the Rosenbrock family is the lin-
ear implicit Euler, which is defined as:

(

1

h
I −

∂ f

∂y

(

tn,yn

)

)

u = f
(

tn,yn

)

+
∂ f

∂ t

(

tn,yn

)

yn+1 = yn +u

For higher order methods more stages are re-
quired. Therefore the efficient implementation of
(Hairer and Wanner (2002)) is used. One step is given
by:

(

1

hγii

I −
∂ f

∂y

(

tn,yn

)

)

ui = f

(

tn +αih,yn +
i−1

∑
j=1

ai ju j

)

+
i−1

∑
j=1

ci j

h
u j + γih

∂ f

∂ t

(

tn,yn

)

i = 1, . . . ,s

yn+1 = yn +
s

∑
j=1

m ju j,

whereas γi j,αi,ci j,mi are constants. Using special sets
of constants, methods of different orders can be obtained.
In this contribution, Rosenbrock methods requiring one,
two and three function evaluations per step are consid-
ered. The Rosenbrock method with one function evalua-
tion is the linear implicit Euler described before and has
therefore order one. One additional function evaluation,
together with the constants of ROS3P (Lang and Verwer
(2001)) yields a method of order three, while a method
of order four (ROS4L) can be obtained with three func-
tion evaluations and the constants of the L-stable method
described in (Hairer and Wanner (2002)). All methods
used here are A-stable, the latter is even L-stable. Note,
that using these Rosenbrock methods, the number of
necessary function evaluations is reduced by one, due
to a smart choice of the constants (Hairer and Wanner
(2002)).

The occuring Jacobian is numerically approximated
using forward finite differences and is updated once
a step. For some applications, using coloured Jaco-
bians, the number of function evaluations can be reduced
(Braun et al. (2012)).

3.2 State events

For each state event a corresponding zero function and a
boolean condition variable are generated. When a certain
state event occurs, the corresponding function changes
its sign and the condition variable becomes true. Usu-
ally in offline simulation, iterative algorithms like the
Bisection method are used to localize the zero crossing.
For real-time applications this algorithms cannot be used
due to their iterative components. Therefore, two simple

Suitability of Different Real-Time Solvers for a Model-Based Engineering Toolchain using Industrial Rexroth
Controllers

886 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118883



methods were implemented to localize the state events
without iterative parts.

The first approach is probably the simplest event han-
dling. A change of sign of the zero function is just recog-
nized and the corresponding condition variable is set to
true. No zero search algorithm is executed. Afterwards,
the equations are evaluated repeatedly until a consistent
status is reached. This means, that all condition vari-
ables do not change anymore. This procedure is known
as event iteration and is required because the occurrence
of one event might trigger another event. This approach
corresponds to replacing all state events in the Model-
ica model with the noEvent operator. Hence, the accu-
racy of this method is strictly limited. Also two or more
occuring zero crossings within one step cannot be han-
dled. The big advantage of this approach is that there is
only little additional effort and simple models with state
events can be simulated.

The second approach used is based on linear interpo-
lation. If a zero function changes its sign, the zero cross-
ing is located with linear interpolation. Afterwards, by
using linear interpolation, the states at the time of the
zero crossing are computed and the corresponding con-
dition is set to true. Then also the equations are eval-
uated repeatedly until a consistent status is reached as
mentioned above. Because only a smaller step than the
desired stepsize was executed, the simulation time is not
synchronous to the controller clock anymore. Therefore
the stepsize of the next step is increased. This procedure
only requires one integration and interpolation per step,
so that again not much additional effort is added for the
event handling. As mentioned above, using the absolute
time has to be avoided. In this case, the time relative
to the last succesful step is sufficient. For some prob-
lems, especially when the zero functions show nearly lin-
ear behaviour, this method provides quite good results.
Also multiple zero crossings in one step can be handled.
One big problem of this approach is that the occurrence
of events in one step after another may lead to the fact,
that the simulation time and the real time cannot get syn-
chronous anymore.

The main disadvantage of this two approaches is that,
without iterative algorithms, no certain accuracy can be
guaranteed for the location of the zero crossings. This
yields not only bad simulation results but also can cause
inconsistent switching, i.e the event iteration is not con-
verging and has to be aborted after a certain number of
steps. In this case, the simulation cannot be proceeded.
Also only one event per integration step can be handled.
This drawbacks have to be avoided at the model side. It
is obvious that not all models can be simulated in real
time due to their complexity. Therefore, the models have
to be simplified for online simulation. Summing up, for
applications which should run a long time, like control

algorithms, state events have to be strictly avoided. How-
ever, for applications which only run a certain time, like
the plant model for the virtual commissioning presented
in this contribution, state events can be tolerated, as long
as the models can be simulated during the required time.

4 Virtual commissioning of a single

axis system on a Rexroth PLC

In this contribution, a virtual commissioning of a hydro-
mechanical system is performed, outlining the advan-
tages of model-based engineering methods. As system,
a single hydraulic axis is considered. The Modelica rep-
resentation of this system is shown in Figure 2. The
model contains a differential cylinder, a valve to con-
trol the volume flow, the pressure supply and the tank,
and sensors to measure the piston position and the pres-
sures in chamber A and B, respectively, of the cylinder.
As already mentioned in section 3, for this contribution,
the components of the system model are simplified with
respect to events and hence do not contain any friction.
The cylinder model does consider end stops, but the cy-
clinder is only moved inside its feasible range anyway.
As controller, a P controller with velocity feed forward
and active damping, is used, which is also available in-
side the simulation environment. This motion controller
has three inputs and one output. As input, the pressures
in cylinder chambers A and B and the current piston po-
sition of the cylinder are required. The calculated output
is the valve command value. Overall, there are four con-
trol parameter to choose. As desired aim of the control, a
velocity profile for the cylinder piston is predefined. To
avoid a re-implementation of the control algorithm on
the PLC, the described toolchain is used to transfer the
simulation model of the controller on the PLC. The inte-
gration into the PLC project is realized using a function
block, which includes the required inputs and outputs,
which are used to pass the signals of the machine to the
control algorithm and get the command values from the
controller.

Until now, following the standard product develop-
ment process, the two phases system design and com-

missioning are handled independently and consecutively.
Hence, the commissioning of the system, which means
the testing and optimization of the controller code, which
is executed in real time on industrial control hardware,
can be started not until the entire system is built up and
supplied with electricity. At this time, the system is al-
ready built inside the customers buildings and therefore
ties up capital and space. If the controller code can be
tested in parallel to the system design and before the real
system is built up, the overall project time can be signif-
icantly reduced.

In order to test the controller code without having the

Poster Session

DOI
10.3384/ecp15118883

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

887



position_sensor

s

P T

A B

differential_cylinder

pressure_gauge_A

pBpA

u

s

tankpressure_supply

pressure_gauge_B

Figure 2. Simulation model of the single axis system

real system, the simulation model of the system is used
to virtually commission the controller. There are several
possibilities to perform the virtual commissioning. First,
it is possible to run the simulation inside the simulation
environment on a basic desktop computer. The hard-
ware controller is then connected to the computer using
a Hardware-In-The-Loop-setup. This approach has the
disadvantage, that the simulation of the system is not ex-
ecuted in real time. Therefore, to synchronize the simu-
lation and the hardware controller, the controller has to
be slowed down to the simulation speed (Hofmann et al.
(2015)). Hence, the real-time capability can not be veri-
fied using this strategy. A second possibility is to run the
simulation on a special real-time hardware. With this ap-
proach, the real-time capability can be investigated, but
additional hardware, which is only used for the commis-
sioning, is necessary, which leads to high costs. This
drawback can be avoided, if the PLC itself is used as
real-time platform. As this hardware exists anyway to
run the controller code, the simulation code of the plant,
which is necessary for the virtual commissioning, can be
executed in parallel on the same hardware. Thus, no ad-
ditional hardware is needed in this case.

The simulation model of the system, which is avail-
able in Modelica, is also attached to a function block in-
side IndraWorks using the toolchain described in section
2.2. The three inputs of the controller are connected to
the corresponding outputs of the function block contain-
ing the simulation model. In the same way, the output
of the controller function block is connected to the in-
put of the plant function block. To simulate the system
behaviour properly, the calculation has to happen in real
time. As the hydro-mechanical system is mathematically
stiff, the used solver has to be chosen deliberately. The
cycle time for the controller and the step size for the sim-
ulation is set to 1 ms.

4.1 Investigation on different solvers for the

simulation

In a first step, before the virtual commissioning is per-
formed, it is investigated, which solver is suitable to
simulate the plant model and offers the best accuracy.
Therefore, only the simulation of the system, without
influences from the controller, is considered. This is
necessary, because the controller can, under certain cir-
cumstances, compensate potential errors of the numeri-
cal method.

Hence, a special stimulus (sine with frequency f =
0.5Hz and amplitude ŷ = 2) is applied to the input of the
system, which is the input on the valve. The simulation
results using the different solvers are finally compared
to reference results. Reference results are obtained us-
ing the CVode solver in an offline simulation. Figure
3 shows the reference result for the output variable, the
piston position of the cylinder.

Five different solver, the explicit Euler method, the
explicit 4th order Runge-Kutta method as well as three
different linear implicit Rosenbrock methods (order one,
three and four), are used to simulate the single axis
model.

4.1.1 Explicit methods

The Euler forward method is an explicit method and
the easiest way to solve differential equations. There-
fore, this numerical method is often used for real-time
simulation. Because of the limited stability region
(Cellier and Kofman (2006)), this method is not suitable
for solving mathematically stiff systems like the hydro-
mechanical single axis system. Using the forward Eu-
ler method in order to simulate, some variables attain
physically nonsensical values (e.g. negative pressures).
Hence, the simulation fails.

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

Time [s]

P
is

to
n

 P
o

s
it
io

n
 [

m
]

Figure 3. Reference result Piston Position generated with
CVode

Suitability of Different Real-Time Solvers for a Model-Based Engineering Toolchain using Industrial Rexroth
Controllers

888 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118883



The explicit 4th order Runge Kutta method is also not
suitable for stiff systems and shows the same behaviour
as the forward Euler. Using this method, the simulation
fails for the same reasons as mentioned above.

4.1.2 Rosenbrock methods

The Rosenbrock methods of order one, three and four
can be used to simulate the system. In order to evaluate
the accuracy of the method, the difference between the
simulation result using each solver and the reference re-
sult is plotted. This difference can be seen in Figure 4.
For the simulation, a step size of h = 20ms is used.

4.2 Investigation on event handling using the

example of a bouncing ball

The implemented event handling is tested in combina-
tion with the bouncing ball example. Both approaches
described in chapter 3, with and without interpolation of
the zero function, illustrate the physical effect, as soon as
the ball hits the underground. But there are differences,
when it comes to accuracy. The bouncing ball model is
simulated for 0,75 s with a cycle time of 10ms and the
ROS4L. During this time, the ball hits the ground exactly
once. Figure 5 shows the simulation results.

Without any interpolation, the event is detected 39mm
below the underground (red curve). When using a lin-
ear interpolation to determine the zero crossing more
precisely, the penetration of the ball can be reduced to
10−9 mm (blue curve). Even though the good accuracy
might result from the fact, that the zero function for this
example does not differ much from a straight line, it can
be seen, that the linear interpolation yields convenient
results, at least for some problems.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5
x 10

−3

Time [s]

D
if
fe

re
n

c
e

 t
o

 r
e

fe
re

n
c
e

 r
e

s
u

lt
 [

m
]

Figure 4. Difference between Rosenbrock methods and ref-
erence result [red: linear-implicit Euler; green: Rosenbrock
method order 3 (ROS3P); blue: Rosenbrock method 4 (L-
stable)]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time [s]

P
o
s
it
io

n
 [
m

]

Figure 5. Bouncing Ball [red: with interpolation of zero func-
tion; blue: without interpolation of zero function]

In case, that more complex systems with multiple
events are regarded, this simple state-event handling does
not work. This applies for example for a complex stick-
slip friction model. Hence, such effects are not included
in the single axis model used in this contribution.

4.3 Practical application of the virtual com-

missioning

For the virtual commissioning, the stimulus described in
section 4.1 is removed and the model is coupled with the
controller on the PLC and then simulated in real time.

As the explicit methods fail to solve the plant model
equations anyway, only the Rosenbrock methods are
considered for the virtual commissioning. Within these
methods, the main computational effort is not induced
by the methods themselves, but through the function and
Jacobian evaluations. Hence, in order to achieve the de-
sired cycle time of 1 ms, the linear implicit Euler method
is chosen for the virtual commissioning of the single
axis, because it needs only one function and Jacobian
evaluation per step. As shown in the passage above, this
method yields the worst results, however the accuracy is
still good enough for this problem.

Figure 6 shows the results of the virtual comission-
ing. The actual position of the piston and the desired one
show a very good agreement. So the parameterization of
the controller is appropiate for this problem and the con-
troller can be used on the real system. Using the method
of virtual commissioning, the commissioning time can
be reduced significantly. Even though the control algo-
rithm is tested and parameterized after the virtual com-
missioning, a fine adjustment of the control parameters
has to be performed, as soon as the control hardware is
connected to the real machine. This is necessary, be-

Poster Session

DOI
10.3384/ecp15118883

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

889



0 1 2 3 4 5 6 7 8 9
−20

0

20

40

60

80

100

120

Time [s]

P
is

to
n
 p

o
s
it
io

n
 [
m

m
]

Figure 6. Comparison of the desired and actual behaviour
after performing the virtual commissioning; used numerical
method: Rosenbrock order 1

cause the behaviour of the virtual plant differs from the
real system due to model inaccuracies.

5 Conclusion

In this work, a toolchain to run Modelica models on real
hardware controller is presented. This toolchain allows
the user to link both, the C/C++ code generated from
the Modelica models and a simulation runtime to exe-
cute the simulation, to a PLC function block. Using this
toolchain, it is possible to realize a virtual commission-
ing. The method of virtual commissioning allows the en-
gineer to test and optimize the controller code before the
real system exists. The controller on the PLC is therefore
connected to the simulation model, which is running on
the PLC, instead of the real system. The PLC acts in this
case as both, a classical PLC for the control tasks and a
real-time hardware target to simulate the virtual plant, at
the same time. To run the simulation in real time, special
numerical methods with real-time capability are neces-
sary.

Therefore, different real-time solver were compared.
In a first benchmark, the accuracy of the solver was an-
alyzed on a mathematical stiff hydro-mechanical system
(single axis system). It was shown, that explicit integra-
tion methods, such as the commonly used Euler forward
and explicit Runge Kutta methods, fail to solve the oc-
curing model equations and are therefore not usable for
the simulation of plant models. The Rosenbrock meth-
ods presented in section 3.1, on the other hand, are in
general suitable to solve stiff differential equations. As
expected, the accuracy of the result depends on the or-
der of the numerical method. The higher the order of the
method, the smaller the error for a constant step size (see
Figure 4).

When using simulation models on a hardware in real
time, some issues have to be considered. While state
events have to be strictly avoided, if the model, e.g. a
control algorithm, is proposed to run within a real life
application, they can be tolerated in models, which are
only used for testing in a defined time range. This applies
to the plant model used for the virtual commissioning.

6 Outlook

A different approach is, instead of designing a separate
control algorithm like the P controller with velocity feed
forward, to use the plant model directly for the control
realizing a Model Predictive Control. Using this method,
an optimal control problem has to be solved in every real-
time cycle. The solution of the optimal control problem
is equivalent to the optimal control input to the system
in the next time step. The computation of the dynamic
optimization problem is very time-consuming, which is
a huge challenge.

Plant models, which contain numerous events, are still
a problem for numerical real-time solvers. To improve
the performance of the Rosenbrock methods in combi-
nation with state events is still an open task. As it is
described, several state events like end stops (e.g. in the
cylinder or the ground in the bouncing ball example) can
be handled already now. Other events, especially deriv-
ing from friction, do not work properly today.

Especially if small cycle-times are required for the
control, efficient code is essential to reduce simulation
times. For the simulation of the models on the hardware
target, the entire simulation runtime, which is also used
for offline simulations, is utilized. This runtime contains
features, like writing output files or dynamic state selec-
tion, which are not necessary for real-time simulations.

References

W. Braun, S. Gallardo-Yances, K. Link, and B. Bachmann.
Fast simulation of fluid models with colored jacobians. In
Proceedings of the 9th Modelica Conference, Munich, Ger-

many, Modelica Association, 2012.

F. E. Cellier and E. Kofman. Continuous System Simulation.
Springer, 2006.

E. Engels and T. Gabler. Universelle Programmierschnittstelle
für Motion-Logic Systeme. In Struktur, Funktionen und

Anwendung in Forschung und Lehre, Tagungsband AALE,
2012.

E. Hairer and G. Wanner. Solving Ordinary Differential

Equations II - Stiff and Differential-Algebraic Problems.
Springer, 2002.

Suitability of Different Real-Time Solvers for a Model-Based Engineering Toolchain using Industrial Rexroth
Controllers

890 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118883



A. Hofmann, S. Schweig, and L. Mikelsons. Virtuelle Inbe-
triebnahme mechatronischer Systeme unter Einbeziehung
realer Industriesteuerungen von Bosch Rexroth. In
Tagungsband Mechatronik 2015, VDI Mechatroniktagung

2015 am 12.-13. März 2015 in Dortmund, 2015.

J. Lang and J. Verwer. ROS3P - an accurate third-order Rosen-
brock solver designed for parabolic problems. BIT Numeri-

cal Mathematics, 41(4):731–738, 2001.

Poster Session

DOI
10.3384/ecp15118883

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

891


