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Abstract 

Since the FMI technology gains ground in industrial 
environment, the demand for robust co-simulation 
increases. In a master-slave concept the master 
algorithms define the quality of a co-simulation whereas 
the properties of the coupled FMUs for co-simulation 
restrict the variety of possible master algorithms. In this 
paper an existing experimental master tool with three 
basic master algorithms was improved to support FMI 
2.0 as well as 1.0. For testing more than 20 Modelica 
examples were developed from which FMUs for co-
simulation were generated by established simulation 
tools (e.g., Dymola, SimulationX). The examples 
demonstrate differences of the three master algorithms. 
Recommendations for tearing as well as improving the 
master algorithms are given. 
Keywords:      Co-Simulation; FMI; master algorithm; 

1 Introduction 

Nowadays simulation is of crucial importance in the 
development of mechatronic and cyberphysical 
systems. The main characteristic of such systems is that 
they consist of components of different physical 
domains like hydraulic, mechanic, electronic, and 
software. Through the strong coupling between the 
components the isolated investigation of single 
components is not sufficient. In fact the overall system 
has to be investigated. This means that we need to 
simulate the complete system. In general, the 
components are modelled and simulated in different 
established simulation tools. One commonly used 
method to simulate the complete system is co-
simulation which can be classified into two types: the 
direct coupling between tools and the export and import 
of the simulation model into the other tool. To do this, 
there exist a lot of proprietary commercial and self-
developed solutions but all of them are only applicable 
on a limited number of tool combinations. In addition 
these solutions need a high effort in maintenance 
because of the proprietary interface to the different 
simulation tools. A further disadvantage of these 
solutions is that the algorithms used for the coupling are 
strongly coupled with the interface. In addition usually 
only standard algorithms based on a constant macro 

step size are used. To avoid these limitations the 
Functional Mock-up Interface (FMI) was developed as 
an interface standard which allows the exchange and 
co-simulation of models. The standard allows the use 
of different coupling algorithms within the same 
interface. The coupling algorithms themselves are not 
part of the standard. Because of the increasing number 
of simulation tools, which support this standard, and the 
need from an industrial point of view (Bertsch et al, 
2014) FMI represents a promising industry standard for 
model exchange. 

2 Co-Simulation in Industrial Environment 

One example where co-simulation is used to analyze the 
system is the simulation of injection valves (Petridis, 
2013). The following physical domains are simulated 
with different simulation tools: 

 Hydraulics and mechanics 

 Electromagnetics and power electronics 
Numerous additional examples for co-simulation like 
the simulation of high-pressure pumps, breaking 
systems, etc. exist.  

Based on these applications we determined the 
following coupling cases: 

 Simulator specific model with one imported FMU 

 Simulator specific model with more than one 
imported FMU 

 Software in the loop (SIL) platform with control 
algorithms and one or more FMU plant models 

Thereby the type of coupling can be distinguished by: 

 Coupling in one direction (see Figure 1) or with 
feedback (see Figure 2). The last one is also known 
as cycle. 

 Analog coupling quantities (displacement, force, 
etc.) or discrete coupling quantities (sensor or actor 
signals)  

The different simulation models can have the properties: 

 Algebraic system without solver 

 Differential or differential algebraic equation 
including solver (based on constant or variable 
solving step size) or without solver 
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Figure 1. One directional coupling between two FMUs. 

FMUFMU

               

Figure 2. Coupling with feedback between two FMUs. 

 
The described coupling configurations are an 
incomplete snapshot based on the current co-simulation 
applications. But it is a very useful orientation to 
determine the requirements on coupling algorithms. 

3 Basic Co-Simulation Algorithms 

Assume, m simulators ܵ ௜, 	݅ ൌ ͳሺͳሻ݉, are to be coupled. 
Sometimes, such a simulator ௜ܵ is called “slave”. 
Typically, it is “packaged” in a FMU. These simulators 
are assumed to exchange altogether n coupling variables ݔ௝ሺݐሻ ∈ ܴଵ, 	݆ ൌ ͳሺͳሻ݊, ݐ ∈ ሾͲ, ܶሿ, which are time 
dependent. Some of the coupling variables are input 
variables for a simulator ௜ܵ, other coupling variables are 
output variables. It is assumed that no input variable is 
output variable of the same simulator. ሾͲ, ܶሿ is the time 
interval to be simulated. If ݔ ൌ ሺݔଵ, ,ଶݔ	 	 … , ௡ሻ்ݔ	 ∈ ܴ௡ 
is the vector of all coupling variables then the call of 
each single simulator can be described by ݔ ൌܳ௜ ௜ܵሺ ௜ܲݔሻ. ௜ܲ is a ሺ݌௜ ൈ ݊)-matrix with one “1” at each row and all 
other entries identical zero. It denominates which 
coupling variable is the input of the simulator ௜ܵ. ௜ܵ has ݌௜ input variables. ܳ௜  is a ሺ݊ ൈ  ”௜)-matrix with one “1ݍ
at each column and all other entries identical zero. It 
denominates which coupling variable is the output of the 
simulator ௜ܵ. ௜ܵ has ݍ௜ output variables. Since each 
coupling variable is output of exactly one simulator,  ∑ ௜௠௜ୀଵݍ ൌ ݊ holds. Furthermore, the ሺ݊ ൈ ݊)-matrix ܳ ൌ ሺܳଵ, ܳଶ,…,	ܳ௠ሻ has exactly one “1” in each 
column and in each line. Since no input variable is 
assumed to be an output variable of the same simulator ௜ܲܳ௜ ൌ ௜݌being a ሺ ߠ holds with ߠ ൈ  .௜)-zero-matrixݍ
The matrices ௜ܲ and ܳ௜ describe the connection graph, 
that means how the input variables and output variables 
of each simulator are connected.  

To illustrate the notation of coupling, the following 
example is given in Figure 3. We have ݉ ൌ ʹ simulators ଵܵ and ܵଶ with ݊ ൌ Ͷ coupling variables ݔ ൌሺݔଵ, ,ଶݔ	 ,ଷݔ	 ଵ݌ ସሻ். ଵܵ hasݔ ൌ ͳ input variables and  ݍଵ ൌ ͵ output variables. Thus the dimension of ଵܲ is ሺͳ ൈ Ͷ) and the dimension of ܳଵ is ሺͶ ൈ ͵). The 

matrices are ଵܲ ൌ ሺͲ		Ͳ		Ͳ		ͳሻ and ܳଵ ൌ ቌͳ Ͳ ͲͲ ͳ ͲͲͲ ͲͲ ͳͲ	ቍ. ܵଶ has ݌ଶ ൌ ͵ input variables and  ݍଶ ൌ ͳ output 
variables. Thus the dimension of ଶܲ is ሺ͵ ൈ Ͷ) and the 
dimension of ܳଶ is ሺͶ ൈ ͳ). The matrices are ଶܲ ൌ൭ͳ Ͳ ͲͲ ͳ ͲͲ Ͳ ͳ				ͲͲͲ൱ and ܳଶ ൌ ቌͲͲͲͳ	ቍ. The input variables of  

ଵܵ are described with ଵܲݔ ൌ ݔସ and of ܵଶ with ଶܲݔ ൌ൭ݔଵݔଶݔଷ൱. The output of ଵܵ is given by the ሺ͵ ൈ ͳሻ-vector 

ଵܵሺ ଵܲݔሻ and of ܵଶ by the ሺͳ ൈ ͳ) dimensional ܵଶሺ ଶܲݔሻ. 
The multiplication of these terms with the 
corresponding matrix ܳ  ܳଵ ଵܵሺ ଵܲݔሻ ൌ ቌͳ Ͳ ͲͲ ͳ ͲͲͲ ͲͲ ͳͲቍ ଵܵ൫ሺݔସሻ൯ 

 ܳଶܵଶሺ ଶܲݔሻ ൌ ቌͲͲͲͳቍ ܵଶ ቌ൭ݔଵݔଶݔଷ൱ቍ 

corresponds to a mapping of the outputs of each 
simulator to the coupling vector ݔ. 
 

FMUFMU

1S 2S

1x

2x

3x

4x

 

Figure 3. Example to describe the notation 

 
Using this notation the task of the coupled simulation 

can be described as the following task: Find ݔ∗ which 
solves:  ݔ∗ ൌ ෍ ܳ௜ ௜ܵሺ ௜ܲݔ∗ሻ௠

௜ୀଵ   (1) 

In general, this equation is a nonlinear equation in the 
space of time dependent functions. All solution methods 
which are available to solve nonlinear equations should 
be checked to solve this equation.  

First fixed point iteration methods are possible which 
take equation (1) “as it is”. There are several 
approaches. With k being the iteration index, and ݔ଴ሺݐሻ ൌ ൫ݔଵ଴ሺݐሻ, … , ,ሻ൯ݐ௡଴ሺݔ ݐ ∈ ሾͲ, ܶሿ the initialization 
of coupling variables, the Gauss-Jacobi method can be 
characterized by  ݔ௞ାଵ ൌ ෍ ܳ௜ ௜ܵሺ ௜ܲݔ௞ሻ	௠

௜ୀଵ   (2) 
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In this case the simulators ௜ܵ can operate in parallel, 
since all simulators access to the same vector of 
coupling variables ݔ௞. 

Another variant is the Gauss-Seidel method (GSM) 
which needs an a priori defined calling sequence ݎ ൌሺݎଵ, … ,  ௠ሻ of the simulators. Each simulator uses theݎ
results of the already called simulators. One iteration 
step is finished if all simulators have been called. The 
Gauss-Seidel method can be summarized by ߦଵ ∶ൌ  ௞ݔ

௜ାଵߦ  ∶ൌ ܳ௥೔ܵ௥೔൫ ௥ܲ೔ߦ௜൯ ൅ ௜ߦ െ ܳ௥೔ܳ௥೔்ߦ௜ 	 								݅ ൌ ͳሺͳሻ݉ 

 

(3) 

௞ାଵݔ ∶ൌ  ௠ାଵߦ
The sequence ݎ is defined by analyzing the matrices ௜ܲ 
and ܳ௜ which is the same as to analyze the connection 
graph. The sequence shall be chosen such that as many 
as possible input coupling variables are “updated” 
before the simulation of each slave simulator.   

A special case of the Gauss-Seidel method takes one 
iteration (ݔ଴ →  ”ଵ) only. That means that no “trueݔ
iteration takes place. This method is sufficient if a 
sequence r of simulator calls can be found at which each 
simulator takes input values only which are outputs of 
before called simulators.  

Equation (1) can be reordered into  	Ͳ ൌ ∗ݔ െ ෍ ܳ௜ ௜ܵሺ ௜ܲݔ∗ሻ ൌ:௠
௜ୀଵ ∗ݔ െ  (4) 		∗ݔܵ

To find a “root” of (4) Newton like methods can be 
applied, e.g. the classical Newton-Raphson method 
(NRM): ݔ௞ାଵ ൌ ሺ߲߲ܵݔ െ ݔሻିଵሺ߲߲ܵܫ ௞ݔ െ   (5)			௞ሻݔܵ

In addition, for all groups of methods (2), (3), (5) many 
modifications are known (Schwetlick, 1979), e.g. the 
introduction of damping methods which limit large 
changes of the solution between two iterations. 

So far all of these methods are applied to the complete 
functions ሺݐሻ, ݐ ∈ ሾͲ, ܶሿ. This results in waveform 
relaxation methods and waveform Newton methods 
respectively which operate with functions within a 
function space on the time interval ሾͲ, ܶሿ.  

Since FMI is not designed to exchange function space 
variables but values at certain time points the time 
interval is segmented into subintervals (communication 
intervals) ሾͲ, ܶሿ ൌ 	 ∪ ሾݐ௖ ,  ௖ is aݐ ௖ାଵሿ. Each timeݐ
communication point at which the simulation of all slave 
simulators ௜ܵ	is stopped for the exchange of values 
between the master and the slave simulators. ݄௖ ൌ ௖ାଵݐ	 െ  ௖ is the communication step size (macroݐ
step size) between communication points which can be 
variable or constant. The above described task of 
simulator coupling (1) is solved for each communication 
interval ሾݐ௖ ,  ௖ାଵሿ. The simulation of a slave simulatorݐ

௜ܵ	within a communication interval is performed by the 
FMI doStep function. Both the methods (2) and (5) need 
repeated simulations of communication intervals, the 
“FMUState” must be stored (GetFMUState) and used 
again (SetFMUState). 

The presented approaches yield a high variety of 
methods which have to be chosen depending on the 
properties of the simulation task and the restrictions of 
the FMUs to be coupled. A master should offer many 
coupling algorithms to be able to choose the best 
suitable one for a special coupling task. General criteria 
for the quality of master algorithms are the performance 
(it touches questions like this: are slave simulations 
repeated within communication intervals?), the 
correctness of the results (it touches questions of 
stability with respect to the communication step size) as 
well as the robustness (is an algorithm suitable for a 
large class of simulation tasks?). The choice of an 
ideally adapted master algorithm is an active field of 
research. 

4 Tool for Testing Co-Simulation 

Algorithms 

In (Bastian et al, 2011) a prototypical master tool for co-
simulation is presented which was developed in the 
MODELISAR project by Fraunhofer IIS EAS Dresden. 
The aim was to investigate basic co-simulation 
algorithms while the Functional Mockup Interface was 
being created. The prototypical master tool coupled 
slaves written in C via a provisional interface which 
possessed the main functionality of FMI 1.0.  

Recently, this “EAS master tool” was improved by 
supporting both the FMI 1.0 and FMI 2.0 for co-
simulation. Furthermore, a graphical user interface for 
convenient handling was added. Currently, there are 
efforts to unify the interface of controlling master 
algorithms via an XML-File. These efforts are also 
supported in a preliminary way. This improved EAS 
master opens the opportunity to thoroughly test its 
master algorithms, since examples can be modeled 
easily using Modelica, and exported as FMU for co-
simulation with commercial simulation tools (e.g., 
Dymola, SimulationX). These FMUs can be coupled via 
the EAS master tool. 

 

Figure 4. Graph window of the master GUI 
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The EAS master tool is controlled by a configuration 
text file with the following structure: 
 
nval            2 
nsim            2 
tstart          0.0 
tend            10.0 
tstepmax        0.001 
tstepstart      0.001 
MasterMode      2 
MasterDebug     2 
OutputGnuplot   1 
it_max_steps    100 
it_tol_abs      1.0E-6 
it_tol_rel      1.0E-4 
simulator   0   fmus/part1.fmu 
simulator   1   fmus/part2.fmu 
graph #val #sim -1(out)/1(in) valueref 
0   0   -1      r part1.out_y.value 
0   1    1      r part2.in_y.value 
1   1   -1      r part2.out_i.value 
1   0    1      r part1.in_i.value 
end 
priority #sim priority 
0   0 
1   0 
end 
cycles  #prior    0(no)/1(yes) 
0   1 
end 

 
The configuration file contains the number of coupling 
variables (nval), the number of FMUs (nsim), the 
simulation time interval ([tstart, tend]), the 
communication step size (tstepmax, tstepstart), the 
choosen master algorithm (mastermode), some 
numerical parameters, the paths to the FMUs, the 
connection graph, and information on directions 
(priority) and cycles in the graph. The graphical user 
interface generates the configuration file. 

The “EAS master tool” comprises the following 
algorithmic approaches: 

 Constant communication step size 
It is user-defined before simulation. Though 
variable communication step size basing on 
Richardson extrapolation was investigated 
successfully (Schierz et al, 2012; Schierz, 2013) it 
is not yet integrated into the tool. 

 Sequence of calling the simulators 
The sequence ݎ ൌ ሺݎଵ, … ,  ௠ሻ of calling theݎ
simulators is not yet automatically generated. It is to 
provide by the user. 

 Gauss-Seidel method (3) 
It is applied to each communication interval. This 
method requires the FMUs to be able to repeat the 
simulation of communication intervals (repeated 
doStep calls).  

 Gauss-Seidel method (3) with one iteration step 
(GS1) 

This simplified algorithm comes to a result in any 
case. But if there are cyclic dependencies the result 
may be no solution. Provided that the dependency 
sequence r is correct this method finds a solution if 
there are no cyclic dependencies. 

 Newton-Raphson method (5) 
This method requires repetitions of simulating 
communication intervals (repeated doStep calls 
over the same communication interval). The 
Jacobian is calculated applying difference quotients 
which needs additional simulations. Jacobians 
delivered by the FMU are not yet evaluated. 

 Directed graph with included cycles 
The dependencies between the simulators form a 
graph. The tool supports a unidirectional graph with 
included cycles. The iterating methods specified 
above can be restricted to the cycles, whereas GS1 
is applied to the non-cyclic parts generally. 

 
The “EAS master tool” solely interprets the 

information on the slave simulators given by FMI. 
Further information on the solution method used within 
the FMU is not exploited.  

5 Application Test Examples 

The „EAS master tool“ was applied to a lot of small test 
examples which address more or less different 
difficulties or aspects of co-simulation. Each example 
was first modeled using Modelica tools (Dymola, 
SimulationX) without partitioning to generate the 
reference solution. Second, the example was split, and 
each part was exported as an FMU. Using the master 
tool the FMUs were coupled, and the example was 
simulated using the three above mentioned basic 
algorithms.  

 
Table 1 gives an impression of the behavior of the 

three basic algorithms. The following subsections 
present four of the examples (row 7, 10, 5, and 23 in  

Table 1) in more detail. Finally, the last subsection 
collects some recommendations for succeeding co-
simulations. 

Table 1. Algorithm test results 

 

Addressed Purpose 

C 

y 

c 

F 

M

U 

G

S

1 

G

S

M

N

R

M
1 straightforward system 

with correct calling 
sequence, no difficulties 

0 7 ⋎ ⋎ ⋎ 

2 linear system, 
diagonally dominant 
matrix, iterations needed 

1 5 d ⋎ ⋎ 

3 digital and analog 
variables, events 

1 3 d d d 
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4 like 2, but not 
diagonally dominant 

1 5 w w ⋎ 

5 like 2, time dependent 
matrix, which loses 
diagonal dominance, see 
section 5.3 

1 5 w w ⋎ 

6 precision test, “too 
large” communication 
step size 

0 3 d d d 

7 precision test, iterations 
needed, see section 5.1 

1 3 d ⋎ ⋎ 

8 precision test, iterations 
needed 

1 3 d ⋎ ⋎ 

9 nonlinear equation, 
iteration needed,  

1 3 w ⋎ ⋎ 

10 changing signal flow 
due to varying resistors, 
but fixed directions for 
FMI, see section 5.2 

1 3 w e ⋎ 

11 like 10, but changed 
fixed directions 

1 3 w e ⋎ 

12 like 10, further changed 
fixed directions  

1 3 d ⋎ ⋎ 

13 like 10, further changed 
fixed directions 

1 3 w e ⋎ 

14 extended circuit with 
changing signal flow, 
but fixed directions for 
FMI 

1 6 d ⋎ ⋎ 

15 like 10, jumping input 
variables, events should 
be hit  

1 3 w e ⋎ 

16 Rossler DAE, large 
simulation interval, 
iterations needed 

1 3 w d d 

17 retarding DAE 0 2 ⋎ ⋎ ⋎ 

18 like 5, other time 
dependent matrix, which 
loses diagonal 
dominance 

1 5 w w ⋎ 

19 linear equation, not 
contractive matrix 

0 2 d d ⋎ 

20 like 7, extended, test of 
initialization 

1 4 e e e 

21 higher index problem 
due to wrong signal 
flow direction;  correct, 
that no FMU exportable 

1 2 e e e 

22 like 21, suitable 
direction 

1 2 ⋎ ⋎ ⋎ 

23 “nearly” higher index 
problem, like 21, see 
section 5.4 

1 2 d d ⋎ 

Legend: Cyc – number of cycles, FMU – number of 
FMUs, GS1 – Gauss-Seidel method with one iteration, 
GSM – iterating Gauss-Seidel method, NRM – Newton-
Raphson method, ⋎ – correct, d – small differences 
compared with unpartitioned reference solution, w – 
completely wrong result, e – error, or simulation fails, 
or FMU not exportable. The difference between “d” and 
“w” is estimated subjectively to give a rough impression 
whether the calculated solution is “far away” or “near” 
the correct solution.   

5.1 Precision Test Example 

The equations according to Table 2 are segmented such 
that the equations of each row in the table are simulated 
with their own simulator within an FMU. The columns 
“In” and “Out” describe the coupling variables.  

Table 2. Equations of the precision test example 

In Equations Out ݔଶ ݔଵ ൌ െݔଶ ݔଵ ݔଵ ߲ݔଶ߲ݐ ൌ ,ଵݔ ଶሺͲሻݔ ൌ ͳ ݔଶ ݔଶ ݁ି௧ െ ଶݔ ൌ  ݕ ݕ
 

This example (row 7 in Table 1) is designed such that 	ݕሺݐሻ is zero. Therefore, the magnitude of y is an 
indicator of precision of the numerical solution. All 
three implemented methods calculate the correct result. 
Both GSM and NRM are similar precise (Figure 5), but 
GS1 is more inaccurate (Figure 6). The communication 
step size was 0.1. 

 

 

Figure 5. y(t) calculated by GSM and NRM 

 

 

Figure 6. y(t) calculated by GS1 

5.2 Varying Resistors 

This example (Figure 7, row 10 of Table 1) from the 
electronic domain is designed such that the voltage 	݅ݒ 
alternately depends on ݔͳ or ݔʹ. The reason for this 
behavior is the variation of the resistances of var1 and 
var2 (Figure 8). 
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Figure 7. Circuit with varying resistors 

 

Figure 8. Varying resistances 

Similar to Table 2 the equations of this example are 
presented in Table 3.  

Table 3. Equations of the varying resistors example 

In Equations Out݅ݒ Ͳ.ͷሺ߲ݔଵ/߲ݐሻ ൅ ଵݔ െ ݅݅ଵ െ sinሺ ሻݐߨ͵ ൌ Ͳ ሺ݅ݒ െ ଵሻ/ሺͳͲͲͲݔ sinሺͲ.ʹݐߨሻ ൅ ͳͲͲͳሻൌ ݅݅ଵ 
݅݅ଵ 

ሻݐ߲/ଶݔͲ.ͷሺ߲ ݅ݒ ൅ ଶݔ െ ݅݅ଶ െ sinሺ ሻݐߨʹ ൌ Ͳ ሺ݅ݒ െ ଶሻ/ሺെͳͲͲͲݔ sinሺͲ.ʹݐߨሻ ൅ ͳͲͲͳሻൌ ݅݅ଶ 
݅݅ଶ ݅݅ଵ,	 ݅݅ଶ	 Ͳ.ͲͲͲͳሺݔଷ െ ሻ݅ݒ ൅ Ͳ.Ͳͳሺ߲ݔଷ/߲ݐሻ ൌ Ͳ ݅݅ଵ ൅ ݅݅ଶ െ Ͳ.ͲͲͲͳሺݔଷ െ ሻ݅ݒ ൌ Ͳ 
 ݅ݒ

 
Because of the varying resistances no unique exchange 
direction of coupling variables is possible. Therefore, 
both GSM and GS1 do not converge. Only NRM 
calculates a correct result (Figure 9).The trajectory is not 
quite smooth due to a large communication step size of 
0.1. 

 

Figure 9. Coupling variable vi(t) 

5.3 Linear System of Equations 

In the following linear system of equations (row 5 of 
Table 1) the matrix varys depending on the time. 
Therefore, a similar behaviour like in Section 5.2 can be 
observed. 

Table 4. Linear system of equations 

In Equations Out 

ଵݎ  ൌ ͳ, ݎଶ ൌ ଷݎ	,ݐ ൌ ͳ ݎଵ, ,ଷݎ ,ଶݔଷݎ ,ଷݔ ଵݔ͵ ଵݎ ൅ ሺͲ.ͳ ൅ ଶݔሻݐ ൅ Ͳ.ʹݔଷ ൌ ,ଵݔ ଵݔ ଵݎ ,ଷݔ ଵݔଶ Ͳ.ͳݎ ൅ ଶݔ͵ ൅ ሺͲ.ͳ ൅ ଷݔሻݐ ൌ ,ଵݔ ଶݔ ଶݎ ,ଶݔ ଷ ሺͲ.ͳݎ ൅ ଵݔሻݐ ൅ Ͳ.ʹݔଶ ൅ Ͷݔଷ ൌ ,ଵݔ ଷݔ ଷݎ ,ଶݔ ଵݔ ଷݔ ൅ ଷݔଶ൅ݔ ൌ  ݕ ݕ
 

Five FMUs are coupled according to Table 4. Both 
GSM and GS1 do not converge, since due to the time 
dependence the fixed point iteration is not contractive 
for increasing ݐ. The NRM calculates the correct result 
(Figure 10).  

 

Figure 10. Result variable y(t) 

5.4 Resistor-Capacitor-Circuit 

This example (row 23 in Table 1) from the electric 
domain is a simple resistor-capacitor-circuit where the 
resistor is divided into two parts. The equations are 
allocated to two FMUs according to Table 4.  

Table 4. Equations of the Resistor-Capacitor-Example 

In Equations Out ݅ ݅ሺͳ െ ܴ௉௔௥௧ଶሻ ൌ ݕ െ ݑ ݑ ൌ ݂݅ ݐ ൏ ʹ Ͷ൑	݂݅	݁ݏ݈݁	Ͳ	݄݊݁ݐ  Ͷ	݁ݏ݈݁	ʹ	݄݊݁ݐ	ݐ
 ݕ

݅ ݕ ∙ ܴ௉௔௥௧ଶ ൌ ݔ െ െ݅ ,ݕ ൌ ሺͲሻݔ  ,ݐ݀/ݔ߲ ൌ ʹ 
݅ 

 
The DAE index of the second FMU is one. But the 

smaller ܴ௉௔௥௧ଶ becomes the “closer” the index gets to 
two, which occurs if ܴ௉௔௥௧ଶ is zero. Therefore, 
difficulties in the coupled simulation arises, if ܴ௉௔௥௧ଶ is 
small. The corresponding result with ܴ௉௔௥௧ଶ ൌ Ͳ.ͲͲͳ 
obtained by the generating tool without partitioning is 
shown in Figure 11. 
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Figure 11. Reference solution Resistor-Capacitor-Circuit 

For this example GSM fails. GS1 produces an 
extremely increasing result. The result of Newton’s 
method is not quite exact due to a large communication 
step size of 0.1 (Figure 12). If the step size is reduced to 
0.001 the reference values are met, c.f. Figure 13. There 
are further investigations necessary to identify the 
influence of a “nearly” high index to properties of the 
coupled simulation.  

 

Figure 12. Result using NRM, step size 0.1 

 

Figure 13. Comparison NRM, step sizes 0.1 and 0.001, 
separated into two diagrams, x(t) above, i(t) below. 

5.5 Recommendations 

The experience collected in checking test examples so 
far can be summarized in the following 
recommendations. 
Essential for successful co-simulation is an intelligent 
tearing:  

 Closely interacting parts should not be separated.  
Tearing is recommended at points where a signal 
flow direction is clearly recognized. The coupling 
variable should be output variable at that FMU 
which calculates it “significantly”. If the 
propagation direction of a variable changes during 
simulation it should not become a coupling variable.   

 An output coupling variable of an FMU should have 
no influence to the input variables of the same FMU. 
At least such reactions should be delayed. 

 Sometimes it is essential to transfer both the value 
and the derivative(s) of coupling variables. This 

should be checked at each coupling variable, e.g. 
using test simulations. 

Often these recommendations regarding tearing cannot 
be followed, since FMUs for components may be 
predetermined by specialized simulation tools. In such 
cases it is advantageous to revise the definition of 
interfaces. 

Furthermore, a suitable choice of master algorithm 
parameters is important: 

 The communication step size should be small 
because of numerical reasons, and large because of 
performance. The estimation of time constants, and 
test simulations can help to choose a reasonable step 
size. If time events (changing of discrete variables) 
are known they should coincidence with end points 
of communication intervals. 

 Cycles in the connection graph should be handled 
using a small communication step size.  

 If the GSM diverges both the tearing and the 
definition of the direction of coupling variables 
should be checked.  

 
The following points are necessary to improve the 

master algorithms of the test tool: 

 Both the calling sequence of the FMUs and cycles 
in the connection graph should be defined 
automatically. 

 It should be possible to apply different algorithms to 
cycles. Sometimes an algorithm should be changed 
during simulation.  

 Variable communication step size should be 
introduced.  

 More algorithmic parameters for the coupling 
methods should be introduce to adapt algorithms to 
given co-simulation tasks. Otherwise such 
adaptions should be done as automatically as 
possible to unburden the user. 

6 Conclusion 

For co-simulation of two or more FMUs three basic 
algorithms were described. These obvious algorithms 
can be a starting point for developing further coupling 
algorithms. Some ideas are presented. 

It has to be further examined which other existing 
coupling algorithms can be described with the notation 
introduced in chapter 3, e.g. the asynchronous method 
(Petridis et al, 2008; Petridis, 2013). Additionally it has 
to be checked if other algorithms can be implemented 
with the existing FMI standard.  

The algorithms were implemented in a master tool for 
testing. This master tool supports FMI 1.0 as well as 
FMI 2.0. It is desirable to implement further and 
modified algorithms which can be optimal adapted to 
given simulation tasks. 
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Many small coupling examples were developed 
which address special issues. These examples should be 
extended in future. The examples show the different 
behavior of the basic algorithms. The Newton-Raphson 
method turns out to be one of the most powerful 
algorithms, but its performance is usually bad. 
Therefore, improved algorithms should be developed.  

Generally, the master tool should become more 
„intelligent“. It is to investigate whether internal 
information (the method used, the actual internal step 
size, numerical properties, …) of the slave simulation 
within an FMU should be transferred to the master. This 
could help the master algorithms to be adapted better. 
Otherwise, a master should be capable of acting without 
any FMU-internal information. Both directions seem to 
be needed.  

The presented examples are a good starting point for 
the FMI cross checking, because until now only single 
FMU are tested. With the presented examples in 
combination with the FMI Test Library (Otter, 2014) the 
coupling and with this the capability of master 
algorithms can be tested. 
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