
Test of Basic Co-Simulation Algorithms Using FMI

Kosmas Petridis1 Christoph Clauß2
1Robert Bosch GmbH, Corporate Sector Research and Advance Engineering, Robert-Bosch-Campus 1, 71272 Renningen,

Germany, kosmas.petridis@de.bosch.com
2Fraunhofer IIS EAS, Zeunerstrasse 38, 01069 Dresden, Germany,

christoph.clauss@eas.iis.fraunhofer.de

Abstract

Since the FMI technology gains ground in industrial
environment, the demand for robust co-simulation
increases. In a master-slave concept the master
algorithms define the quality of a co-simulation whereas
the properties of the coupled FMUs for co-simulation
restrict the variety of possible master algorithms. In this
paper an existing experimental master tool with three
basic master algorithms was improved to support FMI
2.0 as well as 1.0. For testing more than 20 Modelica
examples were developed from which FMUs for co-
simulation were generated by established simulation
tools (e.g., Dymola, SimulationX). The examples
demonstrate differences of the three master algorithms.
Recommendations for tearing as well as improving the
master algorithms are given.
Keywords: Co-Simulation; FMI; master algorithm;

1 Introduction

Nowadays simulation is of crucial importance in the
development of mechatronic and cyberphysical
systems. The main characteristic of such systems is that
they consist of components of different physical
domains like hydraulic, mechanic, electronic, and
software. Through the strong coupling between the
components the isolated investigation of single
components is not sufficient. In fact the overall system
has to be investigated. This means that we need to
simulate the complete system. In general, the
components are modelled and simulated in different
established simulation tools. One commonly used
method to simulate the complete system is co-
simulation which can be classified into two types: the
direct coupling between tools and the export and import
of the simulation model into the other tool. To do this,
there exist a lot of proprietary commercial and self-
developed solutions but all of them are only applicable
on a limited number of tool combinations. In addition
these solutions need a high effort in maintenance
because of the proprietary interface to the different
simulation tools. A further disadvantage of these
solutions is that the algorithms used for the coupling are
strongly coupled with the interface. In addition usually
only standard algorithms based on a constant macro

step size are used. To avoid these limitations the
Functional Mock-up Interface (FMI) was developed as
an interface standard which allows the exchange and
co-simulation of models. The standard allows the use
of different coupling algorithms within the same
interface. The coupling algorithms themselves are not
part of the standard. Because of the increasing number
of simulation tools, which support this standard, and the
need from an industrial point of view (Bertsch et al,
2014) FMI represents a promising industry standard for
model exchange.

2 Co-Simulation in Industrial Environment

One example where co-simulation is used to analyze the
system is the simulation of injection valves (Petridis,
2013). The following physical domains are simulated
with different simulation tools:

 Hydraulics and mechanics

 Electromagnetics and power electronics
Numerous additional examples for co-simulation like
the simulation of high-pressure pumps, breaking
systems, etc. exist.

Based on these applications we determined the
following coupling cases:

 Simulator specific model with one imported FMU

 Simulator specific model with more than one
imported FMU

 Software in the loop (SIL) platform with control
algorithms and one or more FMU plant models

Thereby the type of coupling can be distinguished by:

 Coupling in one direction (see Figure 1) or with
feedback (see Figure 2). The last one is also known
as cycle.

 Analog coupling quantities (displacement, force,
etc.) or discrete coupling quantities (sensor or actor
signals)

The different simulation models can have the properties:

 Algebraic system without solver

 Differential or differential algebraic equation
including solver (based on constant or variable
solving step size) or without solver

DOI
10.3384/ecp15118865

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

865

FMUFMU

Figure 1. One directional coupling between two FMUs.

FMUFMU

Figure 2. Coupling with feedback between two FMUs.

The described coupling configurations are an
incomplete snapshot based on the current co-simulation
applications. But it is a very useful orientation to
determine the requirements on coupling algorithms.

3 Basic Co-Simulation Algorithms

Assume, m simulators ܵ ௜, 	݅ ൌ ͳሺͳሻ݉, are to be coupled.
Sometimes, such a simulator ௜ܵ is called “slave”.
Typically, it is “packaged” in a FMU. These simulators
are assumed to exchange altogether n coupling variables ݔ௝ሺݐሻ ∈ ܴଵ, 	݆ ൌ ͳሺͳሻ݊, ݐ ∈ ሾͲ, ܶሿ, which are time
dependent. Some of the coupling variables are input
variables for a simulator ௜ܵ, other coupling variables are
output variables. It is assumed that no input variable is
output variable of the same simulator. ሾͲ, ܶሿ is the time
interval to be simulated. If ݔ ൌ ሺݔଵ, ,ଶݔ	 	 … , ௡ሻ்ݔ	 ∈ ܴ௡
is the vector of all coupling variables then the call of
each single simulator can be described by ݔ ൌܳ௜ ௜ܵሺ ௜ܲݔሻ. ௜ܲ is a ሺ݌௜ ൈ ݊)-matrix with one “1” at each row and all
other entries identical zero. It denominates which
coupling variable is the input of the simulator ௜ܵ. ௜ܵ has ݌௜ input variables. ܳ௜ is a ሺ݊ ൈ ”௜)-matrix with one “1ݍ
at each column and all other entries identical zero. It
denominates which coupling variable is the output of the
simulator ௜ܵ. ௜ܵ has ݍ௜ output variables. Since each
coupling variable is output of exactly one simulator, ∑ ௜௠௜ୀଵݍ ൌ ݊ holds. Furthermore, the ሺ݊ ൈ ݊)-matrix ܳ ൌ ሺܳଵ, ܳଶ,…,	ܳ௠ሻ has exactly one “1” in each
column and in each line. Since no input variable is
assumed to be an output variable of the same simulator ௜ܲܳ௜ ൌ ௜݌being a ሺ ߠ holds with ߠ ൈ .௜)-zero-matrixݍ
The matrices ௜ܲ and ܳ௜ describe the connection graph,
that means how the input variables and output variables
of each simulator are connected.

To illustrate the notation of coupling, the following
example is given in Figure 3. We have ݉ ൌ ʹ simulators ଵܵ and ܵଶ with ݊ ൌ Ͷ coupling variables ݔ ൌሺݔଵ, ,ଶݔ	 ,ଷݔ	 ଵ݌ ସሻ். ଵܵ hasݔ ൌ ͳ input variables and ݍଵ ൌ ͵ output variables. Thus the dimension of ଵܲ is ሺͳ ൈ Ͷ) and the dimension of ܳଵ is ሺͶ ൈ ͵). The

matrices are ଵܲ ൌ ሺͲ		Ͳ		Ͳ		ͳሻ and ܳଵ ൌ ቌͳ Ͳ ͲͲ ͳ ͲͲͲ ͲͲ ͳͲ	ቍ. ܵଶ has ݌ଶ ൌ ͵ input variables and ݍଶ ൌ ͳ output
variables. Thus the dimension of ଶܲ is ሺ͵ ൈ Ͷ) and the
dimension of ܳଶ is ሺͶ ൈ ͳ). The matrices are ଶܲ ൌ൭ͳ Ͳ ͲͲ ͳ ͲͲ Ͳ ͳ				ͲͲͲ൱ and ܳଶ ൌ ቌͲͲͲͳ	ቍ. The input variables of

ଵܵ are described with ଵܲݔ ൌ ݔସ and of ܵଶ with ଶܲݔ ൌ൭ݔଵݔଶݔଷ൱. The output of ଵܵ is given by the ሺ͵ ൈ ͳሻ-vector

ଵܵሺ ଵܲݔሻ and of ܵଶ by the ሺͳ ൈ ͳ) dimensional ܵଶሺ ଶܲݔሻ.
The multiplication of these terms with the
corresponding matrix ܳ ܳଵ ଵܵሺ ଵܲݔሻ ൌ ቌͳ Ͳ ͲͲ ͳ ͲͲͲ ͲͲ ͳͲቍ ଵܵ൫ሺݔସሻ൯

 ܳଶܵଶሺ ଶܲݔሻ ൌ ቌͲͲͲͳቍ ܵଶ ቌ൭ݔଵݔଶݔଷ൱ቍ

corresponds to a mapping of the outputs of each
simulator to the coupling vector ݔ.

FMUFMU

1S 2S

1x

2x

3x

4x

Figure 3. Example to describe the notation

Using this notation the task of the coupled simulation

can be described as the following task: Find ݔ∗ which
solves: ݔ∗ ൌ ෍ ܳ௜ ௜ܵሺ ௜ܲݔ∗ሻ௠

௜ୀଵ (1)

In general, this equation is a nonlinear equation in the
space of time dependent functions. All solution methods
which are available to solve nonlinear equations should
be checked to solve this equation.

First fixed point iteration methods are possible which
take equation (1) “as it is”. There are several
approaches. With k being the iteration index, and ݔ଴ሺݐሻ ൌ ൫ݔଵ଴ሺݐሻ, … , ,ሻ൯ݐ௡଴ሺݔ ݐ ∈ ሾͲ, ܶሿ the initialization
of coupling variables, the Gauss-Jacobi method can be
characterized by ݔ௞ାଵ ൌ ෍ ܳ௜ ௜ܵሺ ௜ܲݔ௞ሻ	௠

௜ୀଵ (2)

Test of Basic Co-Simulation Algorithms Using FMI

866 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118865

In this case the simulators ௜ܵ can operate in parallel,
since all simulators access to the same vector of
coupling variables ݔ௞.

Another variant is the Gauss-Seidel method (GSM)
which needs an a priori defined calling sequence ݎ ൌሺݎଵ, … , ௠ሻ of the simulators. Each simulator uses theݎ
results of the already called simulators. One iteration
step is finished if all simulators have been called. The
Gauss-Seidel method can be summarized by ߦଵ ∶ൌ ௞ݔ

௜ାଵߦ ∶ൌ ܳ௥೔ܵ௥೔൫ ௥ܲ೔ߦ௜൯ ൅ ௜ߦ െ ܳ௥೔ܳ௥೔்ߦ௜ 	 								݅ ൌ ͳሺͳሻ݉

(3)

௞ାଵݔ ∶ൌ ௠ାଵߦ
The sequence ݎ is defined by analyzing the matrices ௜ܲ
and ܳ௜ which is the same as to analyze the connection
graph. The sequence shall be chosen such that as many
as possible input coupling variables are “updated”
before the simulation of each slave simulator.

A special case of the Gauss-Seidel method takes one
iteration (ݔ଴ → ”ଵ) only. That means that no “trueݔ
iteration takes place. This method is sufficient if a
sequence r of simulator calls can be found at which each
simulator takes input values only which are outputs of
before called simulators.

Equation (1) can be reordered into 	Ͳ ൌ ∗ݔ െ ෍ ܳ௜ ௜ܵሺ ௜ܲݔ∗ሻ ൌ:௠
௜ୀଵ ∗ݔ െ (4) 		∗ݔܵ

To find a “root” of (4) Newton like methods can be
applied, e.g. the classical Newton-Raphson method
(NRM): ݔ௞ାଵ ൌ ሺ߲߲ܵݔ െ ݔሻିଵሺ߲߲ܵܫ ௞ݔ െ (5)			௞ሻݔܵ

In addition, for all groups of methods (2), (3), (5) many
modifications are known (Schwetlick, 1979), e.g. the
introduction of damping methods which limit large
changes of the solution between two iterations.

So far all of these methods are applied to the complete
functions ሺݐሻ, ݐ ∈ ሾͲ, ܶሿ. This results in waveform
relaxation methods and waveform Newton methods
respectively which operate with functions within a
function space on the time interval ሾͲ, ܶሿ.

Since FMI is not designed to exchange function space
variables but values at certain time points the time
interval is segmented into subintervals (communication
intervals) ሾͲ, ܶሿ ൌ 	 ∪ ሾݐ௖ , ௖ is aݐ ௖ାଵሿ. Each timeݐ
communication point at which the simulation of all slave
simulators ௜ܵ	is stopped for the exchange of values
between the master and the slave simulators. ݄௖ ൌ ௖ାଵݐ	 െ ௖ is the communication step size (macroݐ
step size) between communication points which can be
variable or constant. The above described task of
simulator coupling (1) is solved for each communication
interval ሾݐ௖ , ௖ାଵሿ. The simulation of a slave simulatorݐ

௜ܵ	within a communication interval is performed by the
FMI doStep function. Both the methods (2) and (5) need
repeated simulations of communication intervals, the
“FMUState” must be stored (GetFMUState) and used
again (SetFMUState).

The presented approaches yield a high variety of
methods which have to be chosen depending on the
properties of the simulation task and the restrictions of
the FMUs to be coupled. A master should offer many
coupling algorithms to be able to choose the best
suitable one for a special coupling task. General criteria
for the quality of master algorithms are the performance
(it touches questions like this: are slave simulations
repeated within communication intervals?), the
correctness of the results (it touches questions of
stability with respect to the communication step size) as
well as the robustness (is an algorithm suitable for a
large class of simulation tasks?). The choice of an
ideally adapted master algorithm is an active field of
research.

4 Tool for Testing Co-Simulation

Algorithms

In (Bastian et al, 2011) a prototypical master tool for co-
simulation is presented which was developed in the
MODELISAR project by Fraunhofer IIS EAS Dresden.
The aim was to investigate basic co-simulation
algorithms while the Functional Mockup Interface was
being created. The prototypical master tool coupled
slaves written in C via a provisional interface which
possessed the main functionality of FMI 1.0.

Recently, this “EAS master tool” was improved by
supporting both the FMI 1.0 and FMI 2.0 for co-
simulation. Furthermore, a graphical user interface for
convenient handling was added. Currently, there are
efforts to unify the interface of controlling master
algorithms via an XML-File. These efforts are also
supported in a preliminary way. This improved EAS
master opens the opportunity to thoroughly test its
master algorithms, since examples can be modeled
easily using Modelica, and exported as FMU for co-
simulation with commercial simulation tools (e.g.,
Dymola, SimulationX). These FMUs can be coupled via
the EAS master tool.

Figure 4. Graph window of the master GUI

Poster Session

DOI
10.3384/ecp15118865

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

867

The EAS master tool is controlled by a configuration
text file with the following structure:

nval 2
nsim 2
tstart 0.0
tend 10.0
tstepmax 0.001
tstepstart 0.001
MasterMode 2
MasterDebug 2
OutputGnuplot 1
it_max_steps 100
it_tol_abs 1.0E-6
it_tol_rel 1.0E-4
simulator 0 fmus/part1.fmu
simulator 1 fmus/part2.fmu
graph #val #sim -1(out)/1(in) valueref
0 0 -1 r part1.out_y.value
0 1 1 r part2.in_y.value
1 1 -1 r part2.out_i.value
1 0 1 r part1.in_i.value
end
priority #sim priority
0 0
1 0
end
cycles #prior 0(no)/1(yes)
0 1
end

The configuration file contains the number of coupling
variables (nval), the number of FMUs (nsim), the
simulation time interval ([tstart, tend]), the
communication step size (tstepmax, tstepstart), the
choosen master algorithm (mastermode), some
numerical parameters, the paths to the FMUs, the
connection graph, and information on directions
(priority) and cycles in the graph. The graphical user
interface generates the configuration file.

The “EAS master tool” comprises the following
algorithmic approaches:

 Constant communication step size
It is user-defined before simulation. Though
variable communication step size basing on
Richardson extrapolation was investigated
successfully (Schierz et al, 2012; Schierz, 2013) it
is not yet integrated into the tool.

 Sequence of calling the simulators
The sequence ݎ ൌ ሺݎଵ, … , ௠ሻ of calling theݎ
simulators is not yet automatically generated. It is to
provide by the user.

 Gauss-Seidel method (3)
It is applied to each communication interval. This
method requires the FMUs to be able to repeat the
simulation of communication intervals (repeated
doStep calls).

 Gauss-Seidel method (3) with one iteration step
(GS1)

This simplified algorithm comes to a result in any
case. But if there are cyclic dependencies the result
may be no solution. Provided that the dependency
sequence r is correct this method finds a solution if
there are no cyclic dependencies.

 Newton-Raphson method (5)
This method requires repetitions of simulating
communication intervals (repeated doStep calls
over the same communication interval). The
Jacobian is calculated applying difference quotients
which needs additional simulations. Jacobians
delivered by the FMU are not yet evaluated.

 Directed graph with included cycles
The dependencies between the simulators form a
graph. The tool supports a unidirectional graph with
included cycles. The iterating methods specified
above can be restricted to the cycles, whereas GS1
is applied to the non-cyclic parts generally.

The “EAS master tool” solely interprets the

information on the slave simulators given by FMI.
Further information on the solution method used within
the FMU is not exploited.

5 Application Test Examples

The „EAS master tool“ was applied to a lot of small test
examples which address more or less different
difficulties or aspects of co-simulation. Each example
was first modeled using Modelica tools (Dymola,
SimulationX) without partitioning to generate the
reference solution. Second, the example was split, and
each part was exported as an FMU. Using the master
tool the FMUs were coupled, and the example was
simulated using the three above mentioned basic
algorithms.

Table 1 gives an impression of the behavior of the

three basic algorithms. The following subsections
present four of the examples (row 7, 10, 5, and 23 in

Table 1) in more detail. Finally, the last subsection
collects some recommendations for succeeding co-
simulations.

Table 1. Algorithm test results

Addressed Purpose

C

y

c

F

M

U

G

S

1

G

S

M

N

R

M
1 straightforward system

with correct calling
sequence, no difficulties

0 7 ⋎ ⋎ ⋎

2 linear system,
diagonally dominant
matrix, iterations needed

1 5 d ⋎ ⋎

3 digital and analog
variables, events

1 3 d d d

Test of Basic Co-Simulation Algorithms Using FMI

868 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118865

4 like 2, but not
diagonally dominant

1 5 w w ⋎

5 like 2, time dependent
matrix, which loses
diagonal dominance, see
section 5.3

1 5 w w ⋎

6 precision test, “too
large” communication
step size

0 3 d d d

7 precision test, iterations
needed, see section 5.1

1 3 d ⋎ ⋎

8 precision test, iterations
needed

1 3 d ⋎ ⋎

9 nonlinear equation,
iteration needed,

1 3 w ⋎ ⋎

10 changing signal flow
due to varying resistors,
but fixed directions for
FMI, see section 5.2

1 3 w e ⋎

11 like 10, but changed
fixed directions

1 3 w e ⋎

12 like 10, further changed
fixed directions

1 3 d ⋎ ⋎

13 like 10, further changed
fixed directions

1 3 w e ⋎

14 extended circuit with
changing signal flow,
but fixed directions for
FMI

1 6 d ⋎ ⋎

15 like 10, jumping input
variables, events should
be hit

1 3 w e ⋎

16 Rossler DAE, large
simulation interval,
iterations needed

1 3 w d d

17 retarding DAE 0 2 ⋎ ⋎ ⋎

18 like 5, other time
dependent matrix, which
loses diagonal
dominance

1 5 w w ⋎

19 linear equation, not
contractive matrix

0 2 d d ⋎

20 like 7, extended, test of
initialization

1 4 e e e

21 higher index problem
due to wrong signal
flow direction; correct,
that no FMU exportable

1 2 e e e

22 like 21, suitable
direction

1 2 ⋎ ⋎ ⋎

23 “nearly” higher index
problem, like 21, see
section 5.4

1 2 d d ⋎

Legend: Cyc – number of cycles, FMU – number of
FMUs, GS1 – Gauss-Seidel method with one iteration,
GSM – iterating Gauss-Seidel method, NRM – Newton-
Raphson method, ⋎ – correct, d – small differences
compared with unpartitioned reference solution, w –
completely wrong result, e – error, or simulation fails,
or FMU not exportable. The difference between “d” and
“w” is estimated subjectively to give a rough impression
whether the calculated solution is “far away” or “near”
the correct solution.

5.1 Precision Test Example

The equations according to Table 2 are segmented such
that the equations of each row in the table are simulated
with their own simulator within an FMU. The columns
“In” and “Out” describe the coupling variables.

Table 2. Equations of the precision test example

In Equations Out ݔଶ ݔଵ ൌ െݔଶ ݔଵ ݔଵ ߲ݔଶ߲ݐ ൌ ,ଵݔ ଶሺͲሻݔ ൌ ͳ ݔଶ ݔଶ ݁ି௧ െ ଶݔ ൌ ݕ ݕ

This example (row 7 in Table 1) is designed such that 	ݕሺݐሻ is zero. Therefore, the magnitude of y is an
indicator of precision of the numerical solution. All
three implemented methods calculate the correct result.
Both GSM and NRM are similar precise (Figure 5), but
GS1 is more inaccurate (Figure 6). The communication
step size was 0.1.

Figure 5. y(t) calculated by GSM and NRM

Figure 6. y(t) calculated by GS1

5.2 Varying Resistors

This example (Figure 7, row 10 of Table 1) from the
electronic domain is designed such that the voltage 	݅ݒ
alternately depends on ݔͳ or ݔʹ. The reason for this
behavior is the variation of the resistances of var1 and
var2 (Figure 8).

Poster Session

DOI
10.3384/ecp15118865

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

869

Figure 7. Circuit with varying resistors

Figure 8. Varying resistances

Similar to Table 2 the equations of this example are
presented in Table 3.

Table 3. Equations of the varying resistors example

In Equations Out݅ݒ Ͳ.ͷሺ߲ݔଵ/߲ݐሻ ൅ ଵݔ െ ݅݅ଵ െ sinሺ ሻݐߨ͵ ൌ Ͳ ሺ݅ݒ െ ଵሻ/ሺͳͲͲͲݔ sinሺͲ.ʹݐߨሻ ൅ ͳͲͲͳሻൌ ݅݅ଵ
݅݅ଵ

ሻݐ߲/ଶݔͲ.ͷሺ߲ ݅ݒ ൅ ଶݔ െ ݅݅ଶ െ sinሺ ሻݐߨʹ ൌ Ͳ ሺ݅ݒ െ ଶሻ/ሺെͳͲͲͲݔ sinሺͲ.ʹݐߨሻ ൅ ͳͲͲͳሻൌ ݅݅ଶ
݅݅ଶ ݅݅ଵ,	 ݅݅ଶ	 Ͳ.ͲͲͲͳሺݔଷ െ ሻ݅ݒ ൅ Ͳ.Ͳͳሺ߲ݔଷ/߲ݐሻ ൌ Ͳ ݅݅ଵ ൅ ݅݅ଶ െ Ͳ.ͲͲͲͳሺݔଷ െ ሻ݅ݒ ൌ Ͳ
 ݅ݒ

Because of the varying resistances no unique exchange
direction of coupling variables is possible. Therefore,
both GSM and GS1 do not converge. Only NRM
calculates a correct result (Figure 9).The trajectory is not
quite smooth due to a large communication step size of
0.1.

Figure 9. Coupling variable vi(t)

5.3 Linear System of Equations

In the following linear system of equations (row 5 of
Table 1) the matrix varys depending on the time.
Therefore, a similar behaviour like in Section 5.2 can be
observed.

Table 4. Linear system of equations

In Equations Out

ଵݎ ൌ ͳ, ݎଶ ൌ ଷݎ	,ݐ ൌ ͳ ݎଵ, ,ଷݎ ,ଶݔଷݎ ,ଷݔ ଵݔ͵ ଵݎ ൅ ሺͲ.ͳ ൅ ଶݔሻݐ ൅ Ͳ.ʹݔଷ ൌ ,ଵݔ ଵݔ ଵݎ ,ଷݔ ଵݔଶ Ͳ.ͳݎ ൅ ଶݔ͵ ൅ ሺͲ.ͳ ൅ ଷݔሻݐ ൌ ,ଵݔ ଶݔ ଶݎ ,ଶݔ ଷ ሺͲ.ͳݎ ൅ ଵݔሻݐ ൅ Ͳ.ʹݔଶ ൅ Ͷݔଷ ൌ ,ଵݔ ଷݔ ଷݎ ,ଶݔ ଵݔ ଷݔ ൅ ଷݔଶ൅ݔ ൌ ݕ ݕ

Five FMUs are coupled according to Table 4. Both
GSM and GS1 do not converge, since due to the time
dependence the fixed point iteration is not contractive
for increasing ݐ. The NRM calculates the correct result
(Figure 10).

Figure 10. Result variable y(t)

5.4 Resistor-Capacitor-Circuit

This example (row 23 in Table 1) from the electric
domain is a simple resistor-capacitor-circuit where the
resistor is divided into two parts. The equations are
allocated to two FMUs according to Table 4.

Table 4. Equations of the Resistor-Capacitor-Example

In Equations Out ݅ ݅ሺͳ െ ܴ௉௔௥௧ଶሻ ൌ ݕ െ ݑ ݑ ൌ ݂݅ ݐ ൏ ʹ Ͷ൑	݂݅	݁ݏ݈݁	Ͳ	݄݊݁ݐ Ͷ	݁ݏ݈݁	ʹ	݄݊݁ݐ	ݐ
 ݕ

݅ ݕ ∙ ܴ௉௔௥௧ଶ ൌ ݔ െ െ݅ ,ݕ ൌ ሺͲሻݔ ,ݐ݀/ݔ߲ ൌ ʹ
݅

The DAE index of the second FMU is one. But the

smaller ܴ௉௔௥௧ଶ becomes the “closer” the index gets to
two, which occurs if ܴ௉௔௥௧ଶ is zero. Therefore,
difficulties in the coupled simulation arises, if ܴ௉௔௥௧ଶ is
small. The corresponding result with ܴ௉௔௥௧ଶ ൌ Ͳ.ͲͲͳ
obtained by the generating tool without partitioning is
shown in Figure 11.

Test of Basic Co-Simulation Algorithms Using FMI

870 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118865

Figure 11. Reference solution Resistor-Capacitor-Circuit

For this example GSM fails. GS1 produces an
extremely increasing result. The result of Newton’s
method is not quite exact due to a large communication
step size of 0.1 (Figure 12). If the step size is reduced to
0.001 the reference values are met, c.f. Figure 13. There
are further investigations necessary to identify the
influence of a “nearly” high index to properties of the
coupled simulation.

Figure 12. Result using NRM, step size 0.1

Figure 13. Comparison NRM, step sizes 0.1 and 0.001,
separated into two diagrams, x(t) above, i(t) below.

5.5 Recommendations

The experience collected in checking test examples so
far can be summarized in the following
recommendations.
Essential for successful co-simulation is an intelligent
tearing:

 Closely interacting parts should not be separated.
Tearing is recommended at points where a signal
flow direction is clearly recognized. The coupling
variable should be output variable at that FMU
which calculates it “significantly”. If the
propagation direction of a variable changes during
simulation it should not become a coupling variable.

 An output coupling variable of an FMU should have
no influence to the input variables of the same FMU.
At least such reactions should be delayed.

 Sometimes it is essential to transfer both the value
and the derivative(s) of coupling variables. This

should be checked at each coupling variable, e.g.
using test simulations.

Often these recommendations regarding tearing cannot
be followed, since FMUs for components may be
predetermined by specialized simulation tools. In such
cases it is advantageous to revise the definition of
interfaces.

Furthermore, a suitable choice of master algorithm
parameters is important:

 The communication step size should be small
because of numerical reasons, and large because of
performance. The estimation of time constants, and
test simulations can help to choose a reasonable step
size. If time events (changing of discrete variables)
are known they should coincidence with end points
of communication intervals.

 Cycles in the connection graph should be handled
using a small communication step size.

 If the GSM diverges both the tearing and the
definition of the direction of coupling variables
should be checked.

The following points are necessary to improve the

master algorithms of the test tool:

 Both the calling sequence of the FMUs and cycles
in the connection graph should be defined
automatically.

 It should be possible to apply different algorithms to
cycles. Sometimes an algorithm should be changed
during simulation.

 Variable communication step size should be
introduced.

 More algorithmic parameters for the coupling
methods should be introduce to adapt algorithms to
given co-simulation tasks. Otherwise such
adaptions should be done as automatically as
possible to unburden the user.

6 Conclusion

For co-simulation of two or more FMUs three basic
algorithms were described. These obvious algorithms
can be a starting point for developing further coupling
algorithms. Some ideas are presented.

It has to be further examined which other existing
coupling algorithms can be described with the notation
introduced in chapter 3, e.g. the asynchronous method
(Petridis et al, 2008; Petridis, 2013). Additionally it has
to be checked if other algorithms can be implemented
with the existing FMI standard.

The algorithms were implemented in a master tool for
testing. This master tool supports FMI 1.0 as well as
FMI 2.0. It is desirable to implement further and
modified algorithms which can be optimal adapted to
given simulation tasks.

Poster Session

DOI
10.3384/ecp15118865

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

871

Many small coupling examples were developed
which address special issues. These examples should be
extended in future. The examples show the different
behavior of the basic algorithms. The Newton-Raphson
method turns out to be one of the most powerful
algorithms, but its performance is usually bad.
Therefore, improved algorithms should be developed.

Generally, the master tool should become more
„intelligent“. It is to investigate whether internal
information (the method used, the actual internal step
size, numerical properties, …) of the slave simulation
within an FMU should be transferred to the master. This
could help the master algorithms to be adapted better.
Otherwise, a master should be capable of acting without
any FMU-internal information. Both directions seem to
be needed.

The presented examples are a good starting point for
the FMI cross checking, because until now only single
FMU are tested. With the presented examples in
combination with the FMI Test Library (Otter, 2014) the
coupling and with this the capability of master
algorithms can be tested.

Acknowledgements

The authors are much obliged to Prof. Martin Arnold,
Halle, as well as to Dr. Tom Schierz, Gilching, for any
cooperation.

References

Jens Bastian, Christoph Clauss, Susann Wolf, Peter
Schneider. Master for CoSimulation Using FMI. 8th
International Modelica Conference, Dresden, March 20-22,
2011.

Christian Bertsch, Elmar Ahle, Ulrich Schulmeister. The
Functional Mockup Interface – seen from an industrial
perspective. 10th International Modelica Conference, March
10-12, Lund, Sweden, pp. 27-31, 2014.

FMI project website, https://www.fmi-standard.org/

Martin Otter. Modelica FMI Test Library. In: Tutorial:
Functional Mockup Interface 2.0 and HiL Applications of
the International Modelica Conference, Lund, Sweden,
2014

Kosmas Petridis. Synchrone und asynchrone Verfahren zur
gekoppelten Simulation mechatronischer Systeme. VDI
Verlag, 2013.

Kosmas Petridis, Andreas Klein, Michael Beitelschmidt.
Asynchronous method for the coupled simulation of
mechatronic systems. In: PAMM Volume 8 (2008) Nr. 1

Tom Schierz. Modulare Zeitintegration gekoppelter
Differentialgleichungssysteme in der technischen
Simulation. Fortschr.-Ber. VDI Reihe 20 Nr. 447.
Düsseldorf: VDI Verlag 2013.

Tom Schierz, Martin Arnold and Christoph Clauß. Co-
simulation with communication step size control in an FMI
compatible master algorithm. In: Proceedings of the 9th
International Modelica Conference, Munich, Germany,
2012.

Hubert Schwetlick. Numerische Lösungen nichtlinearer
Gleichungen. Deutscher Verlag der Wissenschaften, Berlin,
1979, und R. Oldenbourg Verlag München, Wien, 1979.

Test of Basic Co-Simulation Algorithms Using FMI

872 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118865

