
A Modelica Library Organization Method Supporting Online

Modeling and Simulation

Xiong Tifan1 Zhou Zhiming1 Wan Li1 Li Yongchao1
1CAD Center, Huazhong Univ. of Sci &Tech, China,

{xiongtf ,wanli}@hust.edu.cn, {zhouzm, liyc}@comodel.net

Abstract
Today, the trend of achieving networked collaborative
innovation and design of complex product based on
Modelica is predictable in the industrial field. However,
the existing file-based Modelica library organization
method designed for single-machine environment does
not satisfy the model management requirements for
dynamic collaborative modeling and sharing under the
network environment. Aiming at this problem, a new
organization method of Modelica library based on
database is proposed. The main principle of this
method is that the organization objects are models
rather than files. Through interacting with database
storing metadata describing models, it is available to
achieve model management based on the granularity of
single model. Finally, a network-based multi-domain
unified modeling and simulation platform is developed
on the basis of the model management architecture.

Keywords: Modelica, organization method, online

modeling and simulation

1 Introduction

In recent years, with the increasing complexity of the
products in the field of engineering, it is difficult to
construct all sub-models from different areas for one
person or one team (Zha, 2006), and separate
subsystem simulation in different fields cannot meet
the requirement of the design innovation. The process
of modeling and simulation for complex products is
moving in the direction of integrated multi-domain
modeling. Modelica, as a unified object-oriented
modeling language, can solve this problem properly
well. However, the existing Modelica softwares of
single-machine environment do not support sharing
and reuse of models, which seriously slows down the
process of product innovation. So in order to meet the
challenges of collaborative management and sharing of
models in the internet-distributed environment, it is
extremely necessary to build an online platform to
provide services for different user roles, such as one
person, one team or one enterprise, as shown in Figure
1. A variety of intelligent solutions have been proposed
to explore the network-based system.

组teamindividual

enterprise

Online service platform

Figure 1. Online service platform

Eissen et al. discussed different realization
alternatives for Web-based simulation services and
presented the prototypic implementation of a web
service which is built on the proposed W3C Web
interface stack (Eissen, 2006). This research allows for
the analysis and execution of technical models
described in the well-known Modelica modeling
language. Shi et al. presented an Internet-based
electrical engineering virtual lab (IEEVL) using
Modelica for unified modeling. It uses XML to
represent and exchange information and is only
capable of modeling and simulating for electrical
engineering domain (Shi, 2011). Mohsen et al.
constructed a web-based teaching environment,
OMWeb, which is part of the open source platform
Open-Modelica. It can be used both in engineering
courses as well as for teaching programming languages
(Mohsen, 2011). Oscar built the UN-VirtualLab, this
web platform offers a free web simulation environment
for educational purposes. Users can simulate models
that have been stored on the server though setting
parameters (Oscar, 2011). Zhang et al. researched and
developed a web platform called Proteus. This platform
is designed for education and academic research,
and provides a place where students, educators and
academic researchers can easily create and share their
models of physical systems described using Modelica
(Zhang, 2013).

However, though these research and platforms could
help us to solve some problems in a certain extent,
there exist serious obstacles. They do not break
through the traditional static unstructured organization
method of Modelica library, but just developed as

DOI
10.3384/ecp15118817

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

817

remote presentation systems using the mechanism of
compiler and solving in the single-machine
environment. The functions are too incomplete to get
models reused and shared through the internet and do
not support multi-domain collaborative online
modeling.

This paper mainly aims to propose a decoupled
structured dynamic model library organization method
supporting control on single model by combining the
database with file storage. The method adopts a way of
one file corresponding to one model, to eliminate the
coupling relationship among multiple models within a
single file. So, through managing model metadata by
database and organizing model files by file storage, it
is available to restore the stand-alone environment on
the server for the existing Modelica compiler and meet
the functional requirement of re-use and sharing under
the network environment.

2 Analysis of traditional Modelica library

organization

In the Modelica language specification, the main
compositions are consist of eight types, package,
model, type, connector, block, function, record, and
class (Fritzson,1998). In order to discuss conveniently,
here we just define two types, package and model. The
package of specification is our defined package, and
the remaining types are collectively called as model
type, because their operation and organization in the
database and file storage are same in this paper.

As shown in Figure 2, all Modelica model libraries,
both standard and private, are constructed in the form
of package.mo files. The physical file organization of
Modelica library is based on the file directory,
including folders and mo files, and the logical file
organization takes Package and Model as its objects.
Modelica complier is the core engine of a Modelica-
based multi-domain physical modeling and simulation
platform. When the compiler works, it needs to search
and analyze the referenced or inherited models of
current model, and referenced or inherited models in a
deeper level (Zhao, 2011). The model library
organization based on file directory can well support
the existing compiler’s searching and compiling
function.

As to the traditional organization of model library,
there are two methods, structured organization and
unstructured organization (Modelica Language
Specification Version 3.0). If the folder directory
contain package.mo file, the organization is structured.
In unstructured method, there is no package.mo file,
package classes and sub-classes exist in the same mo
file. For example, as shown in Figure 2, if the
Rotational library is organized by the unstructured way,
there is only a Rotational.mo file, and then it contains
all the information, including sub-models, Spring
and Damper, also including models in sub-library,

AngleSensor and SpeedSensor. A combination of two
ways is applied to the existing software in the single-
machine environment, which will lead to a situation
that one mo file contains multiple packages or multiple

models， as shown in Figure 3.

package Rotational

package Sensors

model AngleSensor

…
end AngleSensor;

model SpeedSensor

…
end SpeedSensor

end Sensors˗

model Spring

…

end Spring˗

model Damper

…

end Damper˗
end Rotational;

Rotational

Sensors

 unstructured organization structured organization

packge.mo

Spring.mo

Damper.mo

packge.mo

AngleSensor.mo

SpeedSensor.mo

Figure 2. Traditional Organization of Model Library

Mo file

Mo file

Mo file

folder

folder

package

package

model

model

model

model

package

model

model

Figure 3. Model organization based on file index

According to the functional requirements of users,
the online platform should supply the modeling service,
simulation service and model management service at
least. Modeling service provides visual modeling to
help to create basic components and models. For
completed models, users can run simulations by setting
the parameters of components through the web-based
simulation service. And the model management service
mainly enables users manage their models
conveniently, including uploading models from local
environment, sharing models, renting models, and so
on. So the current model management organization is
too extensive to satisfy these demands. It mainly
displays in two aspects:

1. Simple file directory mode. As to traditional
Modelica model libraries, there are only mo files
in the file storage, the mo files are taken as control
objects. Though the mode meets the requirements
well for the model-loading of the compiler, it is
negative to achieve the control on single model in
a unified way. To realize the sharing and control of
single model and make it easy to query and

A Modelica Library Organization Method Supporting Online Modeling and Simulation

818 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118817

manage, we need to change the organization of the
model library and organize it orderly based on its
object feature attributes, such as the model's name,
owner, creation time, release time, the release
states, etc.

2. Unstructured model organization method. There
can be coupling relationships in a single file, if the
library is organized by this method. And you may
change other models in a same file when you
change one model, which is not suitable to manage
models based on the granularity of single model.

3 Model Management Architecture

According to the analysis above, in order to achieve
granularity management of single model in the network
environment, it’s required that the organization objects
of library are models rather than files, and the feature
attributes and parameters of single model and
relationships between models, here collectively called
as metadata of models, should be stored on the server.
A relational database can help achieve this purpose.
Under this premise, in order to obtain compiler’s
support to realize the online modeling and simulation,
the single model in the matching relational database
needs to get recognition to search corresponding mo
file from a file system. So one to one mapping
relationship between database and file base is required.

As shown in Figure 4, in the B / S architecture, we
use a combination of model database and model file
base to provide data support for modeling and
simulation, users can interact with the browser to get
the modeling and simulation service and model
management service.

CLIENT SERVER

Browser

Model Management

Service

MODEL

ModelID

Modeling Service

Simulation Service

W
e

b
 S

e
rv

ice

File base

Folder

Folder

Folder

model.mo

Database

One Model

1:1

Figure 4. Model management framework

Database is used to store the basic properties
(metadata) of model and the relationships (reference,
inheritance, etc.) between the models. And file base is
organized by mo files based on file directory to support
the online compiling and simulating service. The
model management service can be achieved on the
basis of attributes of models in the database. For
example, the display and renting authority of model
could be accessed via simply changing publishing state.
If this model has been published, it can be rented and
referenced by other users to acquire re-use. Instead,

others cannot search it on the Internet. The modeling
service saves the models’ mo file in the file base and
the models’ metadata in the database. Besides, solving
results can be stored in the file base by simulation
service. In this framework, one model’s descriptive
information (metadata) in the database corresponds to
one mo file in the file base. So, the management of
model resources based on the granularity of single
model can be reached.

4 Detailed design of management

framework

The framework involves the database design, the file
base design and the dealing with the relationship
between the database and the file base. In addition,
importing the existing libraries, managing library
version and collaborative modeling are also worth
researching. We will discuss these aspects in this part.

4.1 Database design

As shown in Figure 5, we design the metadata of
model object which includes name (Name), creator
(Creator), create date (CreateDate), release date
(PublishDate), status (Status), text information (Text),
model’s parameters (Parameter), industry information
(Industry), major information (Major), model price
(Price), model description (Description) and so on. By
the designing of these attributes, any model can be
acquired, and any operation can be executed. The text
information contains four parts: icon, diagram,
information and used, which is used to displaying
models in different views. Inheritance (Extend) and
reference (Used) relations between models can be used
to searching models. Package object’s attributes
are similar to model, which is included in package.

IdId

ModelModel

NameName

CreateDateCreateDate

PublishDatePublishDate

StatusStatus

TextText

IconIcon

DiagramDiagram

InfoInfo

UsedUsed

ParameterParameter

IndustryIndustry

MajorMajor

PricePrice

DescriptionDescription

ExtendExtend

UsedUsed

IncludeIncludePackagePackage

CreatorCreator

Figure 5. Design of model object

In order to achieve structured display in the client
interface (an internet browser) and management toward

Poster Session

DOI
10.3384/ecp15118817

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

819

single model, it is necessary to use the database to
manage the model library. In accordance with the
model object, we separate sub-models’ details and
relationship from coarse-grained mo files into the
database.

The database structure is shown in Figure 6, Model
table, File table and SVG table are designed to save the
basic information, text information and svg
information (Scalable Vector Graphics, an XML-based
language describing two-dimensional vector graphics
in a graphical format for graphical modeling and
interface icons) of the fine-grained models after
initializing from the model library. And user attributes
are added to achieve the user’s management and
control on models. The Component table stores
components of all models. The Version table helps to
achieve model version management. The Industry table
and Major table can separate models into different
industries and majors. The Parameter table saves
parameter information o models. The Compile Task
table records information of compile task and
Simulation table records information of simulation task.

Model

PK ModelID

 ModelName

FK3 CreatedUserNo

 CreatedTime

 UpdatedUserNo

 UpdatedTime

 PublishedTime

 Status

FK2 IndustryID

FK1 MajorID

FK4 Icon

 Price

 Label

 Description

Version

PK VersionID

FK1 ModelID

 NewVersionID

 Remark

Parameter

PK ParamID

FK2 ModelID

 ParamName

 DefaultValue

 Value

FK1 CreatedUserID

Industry

PK IndustryID

 InterName

 LocalName

 ParentID

Major

PK MajorID

 InterName

 LocalName

 ParentID

User

PK UserID

 Password

 UserName

 Company

 Address

 Telphone

 Email

 ModelPath

File

PK FileID

FK1 ModelID

 FileName

 FileType

 FileSize

 FilePath

FK2 CreatedUserID

 CreatedTime

Md_content

PK MdContentID

FK1 ModelID

 ChildID

 ChildType

Md_ext

PK MdExtID

FK1 ModelID

 ModelType

 ExtModelID

Simulation

PK SimulationID

 SimulationName

 Status

 BeginTime

 EndTime

 ResultPath

FK2 CreatedUserID

 CreatedTime

FK1 ModelID

CompileTask

PK TaskID

 Status

 TaskType

 TaskProperty

 BeginTime

 EndTime

 CreatedTime

FK2 CreatedUserID

FK1 ModelID

SVG

PK IconID

 IconBit

Component

PK ComponentID

FK1 ModelID

 ComponentName

CreatedUserID

Figure 6. Database structure

Inheritance and reference information of models are
critical. These information are included in mo file in
the traditional organization method, and compiler can
get these information by loading the file into the
memory to have a complete model. There will be an
error for server to compile a model’s mo file if the
information is incomplete, which will lead to an
unfriendly user experience. For this reason, inheritance
relational table (Md_Content) and reference relational
table (Md_Ext) are added to store the inheritance and
reference relationship between models. When a user
loads a specific model, the server will load all the
models associated with this model from the relational
database.

Through the designing of database, one user can get
all the corresponding information of himself or herself,
including user information, models, compile tasks,
simulation tasks, and so on. The authority control can
be achieved conveniently.

4.2 File Base Design

The modified model library organization mode is
shown in Figure 7. The physical organizational mode
is still represented by folder and mo file, and also the
logical organizational mode is still organized by
package and model object. But the mapping
relationships between models and packages have been
changed. We abandon the former coupling relationship
between models or packages in mo file, by using a
single mo text to represent a single model or package.

folder

mo file package

model

1:N

1:N

1:1

1:N

1:N

Physical Organizational Mode Logical Organizational Mode

1:1

Mo file

Mo file

folder

folder

model

model

…
…

folder

folder

…
…

…
…

N

Mo filepackage

Organization of model file base

 Figure 7. Mapping between models and packages
Compared to the existing model library organization

mode, all the models separated from an original
package will be stored in a folder named by the
package’s name, and the package.mo file will be the
loading index of the compiler, which do not change the
way of loading models based on file directory. So the
existing compiler can be used in the internet-
distributed environment.

In the database, model is the basic unit of
management. And mo file is the basic organization
object in the file base. After improving organization of
Modelica library, one record of model in the database
can be matched with one mo file in the file base, as
shown in Figure 8. Then any operation to one model
through database can respond to the mo file, like
adding components, modifying parameters and creating
equations. In this way, it is easy to realize synchronous
management of database and file base in the process of
online modeling.

Model

ModelID

Database
File base

One model

Model.mo

1:1

Figure 8. The relationship between database and file base

4.3 Dealing with existing libraries

There have accumulated so many model libraries, since
the softwares in the single-machine environment, such

A Modelica Library Organization Method Supporting Online Modeling and Simulation

820 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118817

as Dymola (Dag, 2002), MWorks (Wu, 2006) and
Openmodelica (Fritzson, 2005), having been used
in machinery, electric, aerospace and other fields for
more than a decade. The network platform should
make full use of these libraries and import them to
expand the library resources, which would be
beneficial to achieving re-use, cutting costs and
shortening the cycle of product development.

For the existing libraries, there are only mo files and
unstructured coupling relationships are common. Then
research on how to split them into single-type mode,
and storing them in the database, would be crucial. The
detailed process of dealing is shown in Figure 9. After
uploading a library file, the splitter of the online
platform analyzes every mo file, splits them into lower-
level mo file one by one, until it just contains one
package or one model, and creates metadata in the
database about corresponding package or model at the
same time. By this way, the existing Modelica libraries
can be stored and reused well on the online platform.

Split top-

package.mo

Contain sub

elements?

model

Over

D
a

ta
b

a
se

F
il

e
b

a
sepackage record ... Store info

(mo,metadata …)

N

Sub elements

Y

Figure 9. Process of splitting mo file

4.4 Collaborative modeling and version

management

The version of one library is labeled as a number
separated by ‘.’, like “3.0”. When a library is created,
the version is defined as 1.0 by default. While one
library is published, a copy of this library will be added
into database and file base, whose state will be set as
published, and meanwhile, the version of original
library would be modified as 2.0, which are still
editable for creator. This published library can be
referenced by others, so the re-use of models is reached
easily.

 For one huge project, it is necessary to create a
group or team on the online platform. All members of
this group can edit this library, but different member
would get different task according to their professions,
and also they would have different authority of task.
The complex model can be implemented through
integrating sub-models of group members by a charge
leader. The progress of collaboration is as shown in
Figure 10, multi-domain collaborative modeling can be
achieved through the division of task.

Library

Package Package Package...

Project

Task Task Task...

Team

...

User User User

Figure 10. The progress of collaborative modeling

5 Application Verification

An online service platform supporting multi-domain
physical modeling and simulation in the web
environment - CoModel (http://www.comodel.net.), as
shown in Figure 11, has been researched and built
based on this organization method of Modelica library.

Figure 11. Online modeling page of CoModel

The architecture of data supporting and modeling
service of CoModel platform is shown in Figure 12.

In the collaborative visualization modeling and
simulation platform, users can interact with the
browser to get the modeling and simulation service and
model managing service. Modeling and simulation
functions are on the basis of file directory in the file
storage, which do not change the way of searching and
loading models of existing compiler, can be
implemented effectively. Solving results are also stored
in file storage, users can download them easily. Model
management can be achieved through contacting with
database and file storage. The platform builds four
kinds of libraries, including standard libraries,
individual libraries, group libraries, and public libraries.
Standard libraries are provided by Modelica
Association (http://www.modelica.org.). Individual
libraries are created by a user. They store users’ private
models and nobody can get the models’ information
except the models’ owner. Group libraries are
developed by a team, aiming at complex and
collaborative product designing. Once individual
libraries and group libraries are uploaded and

Poster Session

DOI
10.3384/ecp15118817

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

821

published on the server, they become public libraries,
and then every user in the platform can rent them to
establish their own models. All the libraries are
organized by a combination of database and file
storage. Database stores all the metadata about
information of model and package, and file storage
stores all mo files by file path. They would respond to

any operation on any model in the process of modeling.
The fact that at present, this data supporting method
based on the decoupled structured dynamic model
library organization shows good performance on the
platform, proves that this method is advanced and
effective to support online modeling and simulation.

Database

(model info)

(model relation)

(user info)

Standard lib

Individual lib

Public lib

Group lib

Result files

File server

DB server

Model management

˄mo and metadata˅

Modeling server

Compiler Queue

Solver Queue

Model.mo

Package.mo

metadata

Search models

Variable.xml

Solver.exe

Compiler nodes

solver nodes

Variable.xml

metadata

Result.msf

outpt

W
C

F
Se

rv
ic

e

File

directory

Client Web Pages Application Servers Database & File Servers

Modeling serverB
ro

w
se

r

File storage

Figure 12. The architecture of CoModel

6 Conclusion

The library organization method acting as the data
support of the web-based general multi-domain
physical modeling and simulation can effectively
achieve dynamic collaborative management and
sharing of models under the network environment. And
based on this method, the technical feasibility of the

reuse and redeveloping of model for further
development can be increased. Of course, this work is
just an initial study of the web platform supporting
online modeling and simulation, and just a
compromised way for existing compiler in stand-alone
environment. The future work involves the
development of networked compiler and improving the
efficiency and performance of online platform.

References

Modelica Association. Modelica – A Unified Object-
Oriented Language for Physical Systems Modeling
Language Specification Version 3.0.
http://www.modelica.org.

Brück Dag, et al. Dymola for multi-engineering modeling
and simulation[C]. Proceedings of Modelica, 2002.

Peter Fritzson, Vadim Engelson. Modelica – A Unified
Object-Oriented Language for System Modeling and
Simulation[J]. Lecture Notes in Computer Science,

1998:67-90. doi: 10.1007/bfb0054087.
Peter Fritzson, Peter Aronsson, Lundvall Håkan, et al. The

OpenModelica modeling, simulation, and development
environment[J]. Simulation News Europe, 2005.

Torabzadeh-Tari Mohsen, et al. OMWeb – Virtual Web-
based Remote Laboratory for Modelica in Engineering

Courses[J]. Tari, 2011. doi ˖
10.1109/ICCSN.2011.6013894.

Duarte Oscar. UN-VirtualLab: A Web simulation
environment of OpenModelica models for educational

purposes[C]. Proc 8th Modelica Conf ． Dresden ，

Germany: ，2011:

30-31．doi：10.3384/ecp11063773.

Eissen S M Z, Stein B. Realization of web-based simulation
services[J]. Computers in Industry, 2006, 57(3): 261-271.
doi: 10.1109/VPPC.2006.364294.

Zhengyin Shi, Shenglin Zhao, Shan-an Zhu. An Internet-
based electrical engineering virtual lab: Using Modelica
for unified modeling[J]. IEEE International Conference on

Communication Software & Networks, 2011:555 - 559. doi˖
10.1109/ICCSN.2011.6013894.

Yizhong Wu. Development of hybrid modeling platform for
multi-domain physical system[J]. Journal of Computer-

Aided Design & Computer Graphics, 2006, 18(1):120-124.
Xuan F. Zha, H. Du. Knowledge intensive collaborative

design modeling and support Part I: Review, distributed
models and framework. Computer in Industry, 57(1): 39-
55, 2006. doi: 10.1016/j.compind.2005.04.007.

Yanshan Zhang, et al. A knowledge-based web platform for
collaborative physical system modeling and simulation[J].
Computer Applications in Engineering Education, 2013.
doi: 10.1002/cae.21572

Jianjun Zhao, Zijun Wu. Multi-domain modeling and co-
simulation based on Modelica[J]. Computer Aided

Engineering, 2011.

A Modelica Library Organization Method Supporting Online Modeling and Simulation

822 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118817

