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Abstract

A model of the multibody dynamics for an omni wheel
assuming embedded in a frame of wider dynamical envi-
ronment of the whole vehicle is under development and
verification. Modelica base classes developed earlier for
the multibody applications with contacts involving fric-
tion are used. Generalization has been performed for the
model of contact tracking algorithm between roller and
horizontal floor. Generalization includes non-zero angle
between the roller axis of rotation and plane of the omni
wheel. Contact tracking algorithm is implemented in two
cases: (a) implicit and (b) explicit.

Models for these cases (a) and (b) are currently “em-
bedded” into the omni vehicle model earlier verified. For
simplicity we analyze a multibody system comprising
the wheel plus set of rollers being mounted along its
circumference. A remainder of the vehicle is replaced
by the wrench properly arranged in a way such that the
wheel keeps its vertical orientation permanently. The
performed computations have shown that two algorithms
of the contact tracking generate completely identical dy-
namics of the whole multibody system.
Keywords: omni wheel; contact tracking; unilateral con-

straint; angled rollers; model of friction

1 Introduction

A construct of the omni vehicle (Ilon, 1975) dynami-
cal model has been presented in (Kosenko and Gerasi-
mov, 2014), see also papers (Kálmán, 2013; Tobolár
et al., 2009). Simplified model for roller mounting on
the wheel disk has been considered there: the roller axis
of rotation assumed to be in the disk, or equivalently the
angle between this axis and the wheel plane, denote it
by ψ , is equal to zero. We will call this angular param-
eter of the model the angle of the preliminary roller ro-
tation (pre-rotation) about the wheel radius intersecting
the roller axis of rotation at its central point.

Omni wheel for this case is shown in Figure 1. There
one can see the lateral view, fragment (a), of the wheel
being equipped by four axisymmetrical rollers, each hav-
ing a shape of the circular spindle. These rollers have
been enumerated by their numbers. Each roller is con-
nected to the wheel by a joint which axis coincides with
the roller axis of rotation. These latter axes both are
orthogonal to the wheel radius exiting from the central
point O and passing through the the roller central point.
So it is possible for the wheel to have a free rolling in
direction perpendicular to its plane. Corresponding con-
tacting curve with respect to the wheel coordinate sys-
tem, being a circle in the case shown, has a coloured
highlighting. This curve has a circular shape provided
the wheel plane keeps its vertical orientation. Front view
of the omni wheel is shown in fragment (b).

For the case of ψ = 0 being shown in Figure 1 a roller
outer profile, generatrix, along its axis of rotation has evi-
dently a circular shape, see Figure 1, fragment (a), again.
This shape provides smooth transfer from one roller to
another while the motion occurs. Evidently if ψ 6= 0 then
it is not the case. Thus, the contact tracking algorithm for
the case of ψ = 0 implemented in (Kosenko and Gerasi-
mov, 2014) turned out to be simple enough. In the case
of ψ > 0 it becomes visibly complicated. And its imple-
mentation on Modelica language is the main goal of this
paper.

Other details of Figure 1 are the following: R is the
omni wheel radius, R1 is the distance between the wheel
central point O and the roller central point, α is the half
roller angular length from the viewpoint O. Unit vectors
{i, j,k} of the base being connected with the wheel are
shown in their initial positions.

In engineering applications one may encounter fre-
quently a situation with ψ > 0. We proposed in (Kosenko
and Gerasimov, 2014) fast algorithm for tracking a con-
tact provided the omni wheel keeps vertical orientation
of its plane (in frame of the whole vehicle construct).
Thus the task for building up the contact tracking algo-
rithm also for the case of ψ > 0 is of interest. This task
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Figure 1. The omni wheel vertically aligned: (a) lateral view; (b) front view.

has been completed in this paper. To reach this goal we
accept the working model of a virtual testbench consist-
ing of one wheel equipped by rollers along its rim. One
can see easily that this simplification has mostly method-
ical nature and does not prevent us from integrating all
the construct back into the whole vehicle having gener-
ally several omni wheels previously analyzed (Kosenko
and Gerasimov, 2014).

So let us consider an omni wheel, see Figure 1 its
lateral and front views with four rollers, which is able
to keep vertical orientation of its plane. We will see
later how to arrange an implementation of such a servo-
constraint. Note in addition, that in the case of ψ > 0 a
generatrix of the roller outer surface will not be a seg-
ment of the circle anymore. It is represented by a more
complicated curve. Moreover, point break of contact on
the roller surface does not correspond to the surface tip
for the case of ψ > 0 as it took place for the simple case
of ψ = 0. To arrange correct simulation on event of the
contact exchange between rollers one has to truncate the
roller surface properly.

2 Model of the Omni Wheel

Dynamics

Vehicle equipped by omni wheels might be replaced by a
wrench consisting of force and torque in the multibody,
rigid, representation. The force supposed to act at the
wheel center. Thus approximately we can analyze the
omni wheel dynamics with the wrench applied instead
of a remainder of the vehicle.

Moreover, the vehicle, or a separated wheel, performs
in our example motion on the horizontal floor for sim-
plicity. Thus, the wheel being embedded into the vehicle
in the simplest case should be aligned vertically. To ex-

press such an alignment analytically we can connect with
the wheel the base {i, j,k} originating from the wheel
center. Both unit vectors i, j lie in the wheel plane, and
unit vector k is normal to it. Thus the vertical alignment
of the wheel is equivalent to horizontal alignment for the
vector k. Analytical condition for this is

k ·nA = 0,

where unit vector nA is vertical, or normal to the floor.
In other words, let T ∈ SO(3) be the matrix of trans-
formation from base {i, j,k} to the inertial absolute co-
ordinate system. Then components of vector k are ex-
actly the components of the matrix T = (ti j)

i, j=3
i, j=1 third

column. Thus one can express condition of the wheel
vertical alignment in the form

t23 = 0.

This latter equation shows that the omni wheel multi-
body system undergoes the geometrical servo constraint.
It is easy to see that this constraint may be implemented
via control effort, rotating torque M directed such as to
prevent rotation of the wheel plane w. r. t. horizontal line
belonging to this plane.

For details of the torque vector M computation note
that this vector has to be directed along horizontal line
passing through the wheel center and belonging to its
plane. Directing unit vector l for this line has to satisfy
the equation

l = k×nA/|k×nA|.

Hence
M = λ l

and the multiplier λ is simply a value of torque balancing
the wheel vertical orientation. In the wheel model torque
M has to be added to other torques applied to the wheel
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Figure 2. The omni wheel dynamics visual model.

under simulation. The value λ is exactly the Lagrange
multiplier corresponding to the servo-constraint above.

It is easy to see the servo-constraint plays here a role
of the virtual testbench for investigating the omni wheel
dynamics. The remainder of the whole vehicle model
is replaced simplistically by the wrench being applied
to the wheel. The whole omni wheel dynamics visual
model is seen Figure 2

As one can detect here the model of the omni wheel
multibody system has been implemented using origi-
nal multibody dynamics class library developed previ-
ously (Kosenko, 2005; Kosenko et al., 2006). One can
use this library independently or with help of the knowm
Modelica Standard Multibody class library or with any
other Modelica library. The better way being recom-
mended for such use is the following one. Firstly, one
can implement mechanical subsystems of the whole sys-

tem under implementation. For instance, mechanisms
having tree structure are modeled in a better way using
Modelica Standard Multibody Library while mechanical
subsystems including unilateral constraints with friction
are better implemented using the aforementioned library
of classes. Secondly, the only issue remained is to im-
plement proper interfaces using models of ports mapping
corresponding signals being tranferred from one subsys-
tems to another.

3 Implicit Contact Tracking

Algorithm

We will assume in the further course that the wheel plane
keeps its vertical orientation permanently. We have to
introduce auxiliary orthonormal bases: b1 = {i1, j1,k1}
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Figure 3. Contact tracking scheme: (a) lateral view of the omni wheel with a roller has been rotated about line OAOB by the
angle ψ , (b) lateral view of the individual roller.

and b2 = {i2, j2,k2}. Intermediate base b2 characterises
partially position and orientation of the roller, while the
base b1 relates to the omni wheel.

The base b2 coordinate system has its origin OB at the
roller central point. The unit vector i2 is directed along
the roller axis of rotation, see Figure 3, fragment (a). The
unit vector j2 is directed orthogonally to i2 and lies si-
multaneously in the vertical plane. The third unit vector
k2 of the base b2 is defined in a natural way as

k2 = i2 × j2.

Remind here that all unit vectors are computed w. r. t.
given fixed (absolute) coordinate system. We assume
that positions and orientations are known for all bod-
ies belonging to the multibody system for any instant
t ∈ [t0, t1] of simulation process. Therefore, we have

i2 = TB · (1,0,0)T , ρρρ = (rOA
− rOB

)/
∣

∣rOA
− rOB

∣

∣ ,

where TB is the roller current orientation matrix.
Origin of the base b1 coordinate system is located

at the point OA (= O in Figure 1) of the wheel center.
The unit vector i1 is oriented horizontally and belongs
to the wheel plane. The unit vector k1 is orthogonal
to the wheel plane and is identical to one of the wheel
connected base vectors. We assume that using a con-
troller the vector k1 permanently maintains its horizon-
tal state. Supposing vector k1(t) known we also have
j1(t) = (0,1,0)T and i1(t) = j1(t)×k1(t).

Consider now relations providing base b2 construc-
tion. Unit vector i2 has been built above. During roller
and the floor contact the vector i2(t) can not become ver-
tical. Moreover, if the roller distortion takes place, its an-
gle of rotation ψ > 0 about axis OAOB is fixed non-zero,
then the condition i2 6= (0,1,0)T is fulfilled permanently.
So we can assume that the condition

c = i2 × (0,1,0)T 6= 0

is also fulfilled.
Thus, we can define k2 = c/|c|. And after this we can

set j2 = k2 × i2. Geometrical constraints, conditions of
orthogonality to be exact, play important role in the omni
wheel kinematics

ρρρ · i2 = 0, ρρρ ·k1 = 0.

These equations actually apply to computing the unit
vector ρρρ and we have their differential versions

d

dt
ρρρ · i2 +ρρρ ·

d

dt
i2 = 0,

d

dt
ρρρ ·k1 +ρρρ ·

d

dt
k1 = 0.

The value cβ = cosβ = i2 · (0,1,0)T of cosine for the
angle β of the roller axis inclination to vertical (0,1,0)T

plays also an important role in the contact tracking algo-
rithm. If current value of the variable cβ is less than some
limiting parameter cβ max, and simultaneously if an alti-
tude of the point OB defining position of the roller center
is less than value R of the wheel radius then the contact
takes place. Otherwise no contact occurs.

Note here that in order to arrange the unilateral con-
straint in the multibody system dynamics model the de-
veloper usually has to implement anything like hybrid
automata construct. In our omni wheel model, on the
contrary, this is not the case. It turned out sufficient
to implement “simple” “if” construct to switch states
“contact” and “no contact” for each individual roller,
and simultaneously to advance forward “contact” state
from one roller to its neighbour. The whole picture looks
like from time to time neighbouring rollers mutually ex-
change their states. One can find details of the unilateral
constraint implementation in (Kosenko and Gerasimov,
2014). Merely note that “if”-alternatives are the fol-
lowing: (a) “contact” state corresponds to zero-valued
relative acceleration of two contacting surfaces at the
point of contact, (b) “no contact” branch corresponds to
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the zero-valued reaction mutual for both bodies at con-
tact. All this is according to the Signorini rule. “if”-
condition depends on the roller orientation variables.

Essential role in all these computations plays a con-
tact tracking algorithm. Generally, its implementa-
tion reduces to computation of the contact point/patch
whitch enables computing forces at contact. Usually,
one considers contact of two surfaces participating in
rigid/elastic interaction of two massive bodies. As a rule,
such algotithms are pretty expensive and noticeably slow
the whole simulation process. Fortunately, in case of
omni wheels we found here the simplest way to make
this computation as fast as possible using “elementary”
geometric considerations.

We can also easily see from the Figure 3 that the point
PB of contact between roller and floor is obtained using
formula

rPB
= rOB

+R1ρρρ −Rj1 + µk1,

where the scalar µ is to be computed. Here the value R1
is the distance between points OA and OB. The scalar µ
can be computed if we multiply the last equation by k2
using dot-product. Thus we have

µ = [Rj1 ·k2 −R1ρρρ ·k2]/k1 ·k2

since the vector rPB
− rOB

lies in vertical section of ax-
isymmetrical surface of the roller, and the vector k2 by
construction is orthogonal to this section. As a result the
position rPB

of the contact point PB is uniquely computed.

4 Explicit Contact Tracking

Algorithm

Yet another way to obtain current position rPB
of the con-

tact point PB, or more accurately: the roller point closest
to the floor, is an application of the following chain of
equations. This chain is simply understood from geo-
metrical scheme shown in Figure 3, (a) and (b).

rPB
= rOB

−mi2 −hj1,

where m = R1 sinq/cosq/cosψ , h = R−R1/cosq, q is
the current value for angle of deviation of the vector ρρρ
from direction of the vector j1. So we have

cosq = ρρρ ·nA, sinq = (nA ×ρρρ) ·k1.

Here we give explanations of some details of Figure 3.
Fragment (a) corresponds to the lateral projection of the
wheel and likewise the distorted roller projection. This
latter object is shown here in a general position. Further-
more, PB is the current contact point between the roller
and the horizontal floor, n is a projection of the roller
axial line segment onto the wheel plane. We can see
easily that this projection is computed by the formula
n = mcosψ because the roller axis is turned about OAOB

by the angle ψ , see fragment (b) for the roller axial verti-
cal lateral section. Thus, we have to pass two straight line
segments from the roller center OB to reach the point PB:
(a) the segment of the roller axis of length m; (b) the seg-
ment down the vertical of length h. As we already men-
tioned above all variables needed are computed through
known variables using explicit formulae.

In case of ψ > 0, distortion exists, for both implicit
and explicit algorithms not all the length of the roller
surface generatrix is necessarily in contact. So really we
have to cut tips of rollers to provide regular simulation
process. Length of the tip to be cut we can obtain for in-
stance empirically or compute it explicitly. Indeed, one
can easily see from Figure 3 that the real roller length
should be computed by the formula

L = 2Rsinα/cosψ.

“Ideal” switching of contact takes place in this case:
exactly at the instant of contact loss for current roller a
contact immediately arises for the “next” roller in direc-
tion of the wheel rolling.

5 The Wheel Model Classes

Hierarchy

Figure 4. Contact model by stages of inheritance.

Model of the omni wheel testbench virtual prototype
is a container class including the following objects in-
stantiated: (a) disk of the wheel; (b) objects of rollers
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Figure 5. Comparison of dynamics for the roller No. 1 central point, its velocity y-coordinate, for cases of: explicit (blue curve)
and implicit (red curve) algorithm of contact tracking.

mounted along the wheel rim; (c) objects of joints con-
necting rollers and the wheel disk; (d) objects of contacts
connecting objects of rollers and the object of the hori-
zontal floor surface; (e) model of base body as a horizon-
tal floor.

Let us analyse in more details a structure of contact
model. This model has many similarities with contact
models previously considered (Kosenko, 2005). Never-
theless important differencies exist. One of them men-
tioned above with regard to organization of the contact
class using simple and efficient construct (Kosenko and
Gerasimov, 2014). Note that in case of ψ > 0 the point of
contact creates a curve with discontinuities at instances
of rollers changes. However, this circumstance does not
prevent the process of regular simulation.

Finally, we apply rigid point contact model as part
of the simplest omni wheel model. For this we use
the base class for constraint/contact models having only
equations of Newton’s third law as a behavioral sec-
tion (Kosenko et al., 2006).

We use class of the contact tracking model on the sec-
ond stage of inheritance, see Figure 4. Cases of this class
organization have been analysed above. Coordinates of
nearest points PA and PB at contact for each pair (floor,
roller) are computed as a result for this class functional-

ity.

Class for computing all kinematical characteristics at
contact needed “works” in case of contact existence on
the next stage of inheritance. On the third stage class for
computing the reactions at contact is “turned on”. Reac-
tions are the following: (a) normal reaction; (b) tangent
force of friction; (c) torque of reactions (zero in the cur-
rent consideration though it is not difficult to compute
torque for several contact models).

To verify an approach for building up the models un-
der analysis we compare the omni wheel dynamics in
cases of implicit and explicit algorithms. The wheel per-
forms free motion (combining rotation and sliding) with
the only restriction: keep vertical alignment of the wheel
disk.

Roller No. 1 central point, its mass center, altitude
was analyzed and verified. More accurately we examine
y-coordinate of the point velocity. Both models turned
out almost identical: in the worst case we have a diver-
gence: in accelerations of order 10−8, in velocities of
order 10−7, in position of order 10−6 over the time span
being equal to 10 units of time. Results of simulation for
velocities are shown in Figure 5. Other divergencies for
the roller No. 1 central point acceleration and position at
time = 10units are shown in Figure 6 and 7 respectively.
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Figure 6. Divergence for y-components of acceleration.

Figure 7. Divergence for y-components of position.

As expected the model with explicit contact tracking al-
gorithm is faster approximately in 1.5 times.

6 Conclusions

The following effects were found as a results of new
contact tracking algorithms applying to the omni wheel
multibody system:

1. Two contact tracking algorithms were proposed:
implicit and explicit. As expected the second al-
gorithm turned out to be faster almost in 1.5 times.
Both algorithms are simple (and efficient) even in
simpler case of rollers without any distortion.

2. In case of distorted rollers contact curve becomes
discontinuous at instants of rollers change. But sim-
ulation process maintains its regularity.

3. Both algorithms generate identical dynamics.

4. Process of the contact model design using technol-
ogy of “vertical separation” outlined above has an

evident motivation and allows a simple generaliza-
tion both for the normal force computation and for
the tangent friction force model.
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