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Abstract

Many dynamic models of vapor compression systems ex-

perience nonphysical variations in the total refrigerant

mass contained in the system when common modeling

approaches are used. Rather than use the traditional state

variables of pressure and specific enthalpy, the use of

density as a state variable can eliminate these variations.

A set of test models is developed in Modelica to study the

effect of the state variable selection on the overall system

charge, and results indicate that this alternative approach

has significant benefits for maintaining a specified mass

of refrigerant in the cycle.

Keywords: vapor compression cycle, simulation, mass

conservation

1 Introduction

Trends toward increased integration in building and

transportation systems, as well as perennial demands for

improved system performance, have continued to en-

courage interest in the development of dynamic mod-

els of vapor compression cycles. Such dynamic cycle

models can be used for a variety of purposes, including

system design, specification, control, and fault diagnos-

tics, and can be applied to a wide variety of residential,

commercial and industrial applications to understand and

predict the behavior of field-installed systems. These dy-

namic models can also be coupled with other systems to

examine and design the behavior of systems-of-systems

to achieve specified requirements for the overall system

and satisfy constraints that must be enforced on the phys-

ical hardware.

This wealth of interest in dynamic models of va-

por compression cycles has resulted in a corresponding

growth in both the literature and the number of docu-

mented models for these cycles (Li et al., 2014b). The

Modelica language is particularly appropriate for the de-

velopment of these system models, due to its object-

oriented, declarative, and acausal modeling approach.

This can be seen in the variety of references that have

been published over the past 15 years regarding models

of vapor compression cycles, such as those found in Li

et al. (2014a), among many others.

The performance of physical system models is often

evaluated by comparing particular characteristics or out-

puts of their simulations to the related characteristics of

an experimentally observed system. Since, as George

E.P. Box said, “all models are wrong, but some are use-

ful,” (Box and Draper, 1987), model creators and users

must examine the most salient characteristics of their

model to ensure that it accurately describes the behavior

of interest. This is particularly important for such com-

plex physical systems as vapor compression cycles; it is

essential that engineers compare and validate dynamic

cycle models against known experimental behavior and

data before expecting to obtain reliable model output.

One such variable that can easily be compared between

simulation and experiment is the the cycle’s refrigerant

mass inventory, or charge, which is usually known to

a fairly high degree of precision, and is also constant

over extended time intervals. Such stability and ease of

measurement is theoretically well-suited to use in model

parameterization and calibration, and is convenient for

study in dynamic system models.

Unfortunately, many model formulations for vapor

compression cycles demonstrate significant variations in

the total system charge (Cecchinato and Mancini, 2012)

that do not correspond to observed behavior in experi-

mental systems. This is significant for a few reasons;

perhaps the most important of these is that the dynam-

ics associated with the variations in the cycle charge will

be coupled to the other system dynamics and introduce

aberrant behavior that would not be observed in an exper-

imental system. In addition, the dynamics of the refrig-

erant mass may also be important of themselves, particu-

larly as pertains to ongoing efforts to develop cycles with

minimized refrigerant charge (Corberan et al., 2011). Fi-

nally, the relative ease and precision with which the re-

frigerant mass can be measured, particularly in relation

to other quantities such as the specific enthalpy, can be

invaluable in calibrating dynamic models of these sys-

tems to experimental data.

One contribution to the related field of evapora-

tor charge management was made by Cecchinato and

Mancini (2012), in which the authors develop a moving-

boundary formulation of a single evaporator that con-

serves refrigerant mass. Previous work related to the

dynamics associated with the cycle charge also includes

that of Bonilla et al. (2012), in which the authors study
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the effect of system oscillations and numerical instabil-

ity resulting from variations in the density in an evap-

orator. Other work with a similar focus includes that

of Tummescheit (2002), which discusses both chattering

(oscillations around a phase boundary) and the selection

of different state variables due to different parameteriza-

tions for the equations of state for various fluids.

There are two primary objectives of this paper: ex-

ploring the causes of the variations in the cycle charge,

and developing an alternative modeling approach that

conserves refrigerant mass. This study will be done via

the use of a simplified cycle model, developed in Mod-

elica, that eliminates extraneous complexity yet main-

tains the salient characteristics of models that cause vari-

ations in the cycle charge. While common cycle mod-

els have many important additional characteristics, such

as the use of detailed heat transfer or frictional pres-

sure drop correlations, these characteristics are not es-

sential to the analysis of, or solution to, the variations

in the cycle charge. One additional effect that is signif-

icant for experimental systems but has been neglected

for this initial study is that of the refrigerant oil; while

some of the refrigerant charge in experimental systems

is inevitably dissolved in the oil and a charge inventory

that ignores this effect will inevitably be lower than ex-

perimentally observed system charge, the challenges in-

herent in modeling the refrigerant-oil interactions and

the need for initial work in this area elicited a focus on

single-component working fluids.

Following this introduction, Section 2 discusses the

causes of the variation in the cycle charge in the context

of the finite volume pipe model, as well as a method of

eliminating these variations. Section 3 presents a discus-

sion of the construction and implementation of the com-

ponent models used in the simplified cycle models which

are both conservative and nonconservative, as well as an

approach for initializing these models to achieve a spec-

ified cycle charge. The results of simulating these modi-

fied models to eliminate the fluctuations in cycle charge

are discussed in Section 4, while the final section sum-

marizes the work presented in the paper and suggests fer-

tile areas for exploration future work.

2 Cycle Mass Variation

Basic vapor compression cycles consist of a compressor,

an expansion valve, and two heat exchangers. Common

simulation architectures are designed to take advantage

of the different timescales for the dynamics of the differ-

ent components; since the time constants of the compres-

sor and expansion valve are such smaller than those of

the heat exchangers, algebraic models are used for these

components, and dynamic models are used for the heat

exchangers. One common type of models for the heat

exchanger dynamics used in this research are so-called

finite volume models, which use the method of lines to

discretize the partial differential equations (PDEs) de-

scribing the mass, momentum, and energy conservation

in the system. The resulting model formulation consists

of a set of ordinary differential equations (ODEs) that

can be integrated forward in time to study the dynam-

ics of the system, as well as a set of algebraic constraints

including those introduced by the compressor and expan-

sion valve models. While the high complexity of the fi-

nite volume models makes them somewhat slower than

other heat exchanger modeling approaches, their abil-

ity to describe spatial variations in the heat exchanger

behavior has made them quite popular (Elmqvist et al.,

2003; Franke et al., 2009; Laughman, 2014).

As is the case with the development of any physical

system model, it is essential to clearly define the pur-

pose for which a model is constructed to ensure that it

uses an appropriate set of assumptions to describe the

desired behavior. Since the behavior of the refrigerant

mass in the cycle are the focus of this research, the mod-

els constructed in this paper only describe the behavior

of the working fluid in the pipe, rather than the dynam-

ics of the coupled primary fluid / tube wall / secondary

fluid system of a prototypical air-source vapor compres-

sion cycle. The conservation equations were also sim-

plified by neglecting both gravitational forces and ax-

ial heat conduction in the direction of the fluid flow.

Other model assumptions used in this work include that

of one-dimensional pipe flow, thermodynamic equilib-

rium in each discrete volume of the refrigerant pipe at

each instant in time, and a homogeneous flow field in the

two-phase region, meaning that the liquid and vapor ve-

locities are equal. These assumptions were employed to

avoid additional complexity in the models in an effort to

focus on the underlying causes of variations in the cycle

mass.

Under these assumptions, the PDEs describing the

conservation equations for a volume of fluid in the re-

frigerant pipe are

∂ (ρA)

∂ t
+

∂ (ρAv)

∂x
= 0 (1)

∂ (ρvA)

∂ t
+

∂ (ρv2A)

∂x
=−A

∂P

∂x
−Ff (2)

∂ (ρuA)

∂ t
+

∂ (ρvhA)

∂x
= vA

∂P

∂x
+ vFf +

∂Q

∂x
, (3)

where additional information about the symbols and

nomenclature used in these equations can be found in

the table at the end of this paper. The Reynolds transport

theorem can be used to relate the changes in state for a

control volume of fixed dimension to the the fluid flow-

ing into and out of that control volume. The resulting

expressions can then be discretized to generate a set of
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ODEs, e.g.,

d(ρ jVj)

dt
= ṁk − ṁk+1 (4)

d(ṁil)

dt
= ρ jv

2
jA j −ρ j+1v2

j+1A j+1+

A j +A j+1

2
(Pj+1 −Pj)+Ff ,i (5)

d(ρ ju jA j)

dt
= Ḣk − Ḣk+1+

v jA j(Pj+1 −Pj)+ vFf ,i + Q̇ j, (6)

where the set of ODEs corresponds to the number of vol-

umes used to subdivide the length of the refrigerant pipe,

and the indices refer the fact that we are using a stag-

gered flow grid (Patankar, 1980). In these equations, the

i indices are referred to the momentum grid, the j indices

are referred to the thermal grid, and the k = j+1 indices

refer to the boundaries of the thermal grid. In addition,

the term Ḣk is defined as

Ḣk = ṁkh̄upstream, j, (7)

and the mixed-cup specific enthalpy h̄ is equal to the in

situ specific enthalpy under the homogeneous flow as-

sumption (Laughman, 2014).

Thermodynamic property relations also play an im-

portant role which is complementary to the differen-

tial equations of fluid motion. These property rela-

tions, which are also algebraic, describe the relations

between the intensive and extensive fluid properties for

a given volume of fluid in thermodynamic equilibrium.

These properties include temperature, pressure, specific

enthalpy, and density, among many others. As a result

of the Gibbs phase rule, there are two degrees of free-

dom for a single-component pure fluid when there is only

one phase present, so that knowledge of two intensive

properties is sufficient to determine any other property.

When there are two-phase flows, there is only one degree

of freedom, but the specification of an intensive mixture

property is also needed to determine the state of the two-

phase mixture (Bejan, 2006). For example, the specifi-

cation of pressure P and mixture specific enthalpy h will

theoretically allow the calculation of any other properties

in the thermodynamic phase space.

The calculation of thermophysical properties for dy-

namic simulation generally needs to be very fast and ac-

curate, due to the number of function evaluations used

in a typical system model. As a result, the use of

standard equations of state is discouraged in favor of

other interpolating methods, such as cubic polynomials

or splines (Aute and Radermacher, 2014). Such methods

use function approximation to describe each of a set of

desired properties as a function of a much more limited

set of properties that are calculated at each time step in

the simulation. Many thermophysical property routines

for refrigerants use P and h as coordinates in the func-

tion approximation space to quickly calculate the variety

of necessary properties.

The construction of a dynamic model of a refrigerant

pipe must take into consideration both the structure of

the equations of fluid motion, as well as the implementa-

tion of the thermophysical property calculation methods,

to generate a computationally efficient simulation. The

selection of an infelicitous set of coordinates in which

to integrate the conservation equations 4-6 can result in

the generation of a large set of nonlinear equations that

must be solved to calculate the fluid properties at every

time step and for every fluid volume, resulting in poten-

tial numerical and practical challenges.

The most common approach taken in this regard is the

selection of pressure P and specific enthalpy h as the state

variables for the equations of motion, since these are of-

ten also used as the coordinates for calculating the fluid

properties. The derivatives of M(P,h) and U(P,h) in the

above equations can thus be written as

dM

dt
=V

(

dρ(P,h)

dt

)

(8)

=V

(

∂ρ

∂P

∣

∣

∣

∣

h

dP

dt
+

∂ρ

∂h

∣

∣

∣

∣

p

dh

dt

)

(9)

dU

dt
=V

(

d(ρ(P,h)u(P,h))

dt

)

(10)

=V

[

(

h
∂ρ

∂P

∣

∣

∣

∣

h

−1

)

dP

dt
+

(

∂ρ

∂h

∣

∣

∣

∣

p

h+ρ

)

dh

dt

]

.

(11)

The use of these property relations, along with the

stateSelect attribute, can help the Modelica compiler

to select P and h as the state variables for the model. By

selecting these properties as state variables, they can be

integrated by the solver used in a given Modelica tool,

such as DASSL or Radau IIa.

The selection of a set of coordinates for the system can

have a significant impact on many other variables of the

system. One particular variable that is strongly affected

by this choice of state variables is the total mass of the

system Mtotal . Since no mass is stored in the compres-

sor or expansion valve models, an expression for Mtotal

can be developed by summing all of the masses for the

individual control volumes in the pipe model, e.g.,

Mtotal = ∑
k

ρkVk = ∑
k

ρk(P,h)Vk. (12)

Because the integration of the state variables results in

some error, however, it is important to note that a more

accurate description of this sum might be

Mtotal = ∑
k

ρ̂k(P+ ε,h+ ε)Vk, (13)

where ε is the error tolerance of the integration rou-

tine and ρ̂ represents the numerical approximation of

Session 10D: Thermofluid Systems, Models and Libraries 2

DOI
10.3384/ecp15118759

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

761



ρ . While these integration errors are not problematic in

many fluids for which the relation between P, h, and ρ
is nearly linear, two-phase refrigerant flows experience

large changes in density as the fluid passes from the liq-

uid region into the two-phase region. These large den-

sity derivatives can effectively amplify small deviations

in either P or h, resulting in large changes in the density

between subsequent time steps. Consequently, small er-

rors in the integration of both of these quantities can ac-

cumulate quickly and lead to significant and unexpected

changes in the total system mass.

Further consideration of Equation 12 suggests an al-

ternative choice of state variables that can reduce these

undesirable changes in the refrigerant mass; since the

ultimate objective of reducing nonphysical variations in

the system charge is equivalent to reducing the errors in

the cell density calculations, the selection of ρ as a state

variable will allow the integrator to minimize the errors

in the density directly, rather than through ρ(P,h). While

this choice may appear to be unconventional because of

the potential for numerical chattering caused by the large

density changes that accompany the movement of the

fluid state across the saturated liquid line, the choice of P

and ρ as state variables will eliminate the amplification

of errors in the density calculation, resulting in a corre-

sponding reduction in the variation of the total system

mass.

The alternative formulation of the state variables re-

sults in the following expressions for the derivatives of

M(P,ρ) and U(P,ρ) for each control volume, e.g.,

dM

dt
=V

dρ

dt
(14)

dU

dt
=

d(ρu(P,ρ)V )

dt
(15)

=V

[(

ρ
∂h

∂P

∣

∣

∣

∣

ρ

−1

)

dP

dt
+

(

ρ
∂h

∂ρ

∣

∣

∣

∣

P

+h

)

dρ

dt

]

.

(16)

As might be expected, the selection of ρ does also im-

pose additional costs to the simulation. Perhaps the most

significant of these is that the use of ρ as a state variable

will result in smaller time steps because of the large val-

ues of the derivatives at low static qualities of the flow.

In addition, the selection of these state variables will also

have an effect on the final set of equations that are gener-

ated because the change in coordinates will result in the

construction of a different set of equations to calculate

the remaining fluid properties, such as the calculation of

h(P,ρ). In the case that these equations are nonlinear, the

simulation time could also be longer than would be for

the case with the selection of the original state variables.

However, these costs may be outweighed by the benefit

of having a constant cycle charge.

Another alternative method for describing the dynam-

ics of the differential control volume involves expanding

the number of state variables to include pressure, specific

enthalpy, and density. While this approach does result in

a larger number of state variables, it has the advantage

of simultaneously minimizing the variations in system

charge while enabling the use of P and h for calculat-

ing other refrigerant properties. Such a method uses the

same differential equations as the (P,ρ) model, but also

includes the additional ODE

dh

dt
=

∂h

∂P

∣

∣

∣

∣

ρ

dP

dt
+

∂h

∂ρ

∣

∣

∣

∣

P

dρ

dt
. (17)

It is also important to note that the set of property

derivatives ∂h/∂P and ∂h/∂ρ from Equations 14 and 16

do not need to be separately calculated in the property

routine to use P and ρ as state variables. The original

set of property derivatives can instead be manipulated to

provide the needed derivatives, i.e.,

∂h

∂P

∣

∣

∣

∣

ρ

= −
∂ρ

∂P

∣

∣

∣

∣

h

∂h

∂ρ

∣

∣

∣

∣

P

(18)

∂h

∂ρ

∣

∣

∣

∣

P

=
1

∂ρ
∂h

∣

∣

∣

P

. (19)

3 Mass Conserving Models

A simplified cycle model, described in the following

section, was developed to evaluate the efficacy of these

different approaches at maintaining a specified cycle

charge. Details about the components and construction

of this test cycle model model will be discussed in this

section, as well as the means of initializing this cycle to

achieve a specified system charge.

3.1 Component Models

The simplified cycle model developed in this section in-

cludes three components: a refrigerant pipe, a pump, and

an “enthalpy adjuster”. These components were used to

create a system cycle model which maintained mass and

energy balances. While the main focus of this work is

the refrigerant pipe, the pump is needed to define a re-

lation between the mass flow rate and the pressure drop,

so that these variables can be controlled and varied to ex-

amine their effect on the total cycle mass. An additional

component, referred to as an enthalpy adjuster, was also

used to enforce the conservation of energy throughout

the system; this component included no pressure drop,

but only modified the enthalpy of the working fluid flow-

ing through it so that energy was conserved over the cy-

cle. Neither the pump nor the enthalpy adjuster stored

any refrigerant mass; consequently, these components

had no state and imposed only algebraic constraints on

the system to achieve a desired system balance point.

The state variables were therefore only associated with

the refrigerant pipe.
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A simplified pipe model, governed by the equations

described in Section 2, was developed to test the impact

of the state variable selection on the dynamics of the cy-

cle charge. In addition to the governing ODEs, these

models also required the inclusion of a set of closure

relations describing the heat transfer and the frictional

pressure drop. An ideal heat transfer connection was

assumed for the sake of simplicity, so that the thermal

energy was directly added to the refrigerant stream in

each control volume, rather than being governed by the

temperature gradients between the refrigerant pipe wall

and the bulk fluid. A simplified momentum equation that

only accounts for the steady-state frictional pressure drop

in both the single and two-phase regions was also as-

sumed, in which

∆P = K
∆P0

ṁ2
0

ṁ2, (20)

and the nominal values of ∆P0, ṁ0, and the adjustable

constant of proportionality K were set at the top level of

the model. A numerical regularization method was also

implemented to improve the numerical robustness of the

model for small values of the mass flow rate and pressure

drop (Casella et al., 2006).

One feature of the pipe model that was particularly

important to this work was the ability to use different

models for the relations between the property differen-

tials. This was achieved by implementing the set of dif-

ferential models as a replaceable model inside the larger

pipe model. Each pipe model includes its own differen-

tial volume model, but computes the same terms dMs and

dUs. While each of these underlying differential models

implements different relationships between the proper-

ties, the instantiating pipe model only needs to equate the

differentials of the mass and internal energy to the terms

on the right hand side of Equations 4-6. This is demon-

strated in the following simplified excerpt from the re-

frigerant pipe model.

// DIFFERENTIAL VOLUME MODEL

replaceable model DifferentialModel =

DifferentialModel_ph

constrainedby

PartialDifferentialModel;

DifferentialModel diffVolume(

redeclare Medium=Medium,

n=n,

fluidVolumes=fluidVolumes,

ps={mediums[k].p for k in 1:n},

hs={mediums[k].h for k in 1:n},

ddhps={mediums[k].ddhp for k in 1:n},

ddphs={mediums[k].ddph for k in 1:n},

stateChoice=stateChoice);

equation

dms = diffVolume.dms;

dUs = diffVolume.dUs;

By further establishing a PartialDifferential-

Model from which all of these differential models can

inherit, the differential volume model can be replaced

while maintaining some moderate restrictions on the pos-

sible types of replacement, enabling the state variables to

be changed without changing any of the other equations

in the pipe model.

This implementation of these differential vol-

ume models also required the careful use of the

stateSelect attribute, as the selection of states was

based upon the choice of state variables managed with

the differential volume model. A ThermoStates

enumeration with literals including states_ph,

states_pd, and states_phd was therefore used to

coordinate the use of a given differential volume model

and the corresponding state selection attribute for the

Modelica compiler.

A pump model and an enthalpy adjuster model were

also created to study the closed loop cycle dynamics. The

pump model used a scaled version of the basic relation-

ship between mass flow rate and pressure drop (Equa-

tion 20) to calculate the pressure rise across the pump for

the nominal pump speed that is inversely proportional to

the pressure drop for pipe model including a given num-

ber of control volumes, e.g.,

ṁ =

(

N

Nnom

)

ṁ0

√
∆P0

√

∆P
(

Nnom
N

)2
. (21)

As no mass was stored in this component, the mass flow

rates into and out of the pump were equal, and the energy

change across the pump was a quadratic function that

compensated for the change in enthalpy across the pipe

due to pressure loss. This term was much smaller than

the energy change in the pipe due to the heat flux into

the pipe. As was the case for the pressure drop model of

the pipe, regularization methods were also used to com-

pensate for numerical singularities.

An analogous enthalpy adjuster model was also cre-

ated to compensate for the change in the specific en-

thalpy across the pipe due to the applied heat flux. This

model included no pressure drop or mass storage, and

only modified the specific enthalpy for the working fluid

travelling to include the effect of the total applied thermal

energy gain as the fluid travels through the pipe. Con-

sequently, the equations describing the simplified model

used to fulfill the energy balance for the overall system

are

ṁout = ṁin (22)

Pout = Pin (23)

hout = inStream(hin) + Q̇in/min (24)

hin = inStream(hout) − Q̇in/min. (25)

This model is very similar to that of

Modelica.Fluid.Pipes.StaticPipe, but also
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includes a change in the outlet enthalpy corresponding

to the applied heat gain. Stream connectors and reg-

ularization methods around zero mass flow rate were

also used in these individual components to improve the

numerical robustness of the simulation.

3.2 Initialization

The problem of achieving a specified constant charge for

a cycle simulation can be effectively split into two related

problems: the initialization of the simulation so that the

cycle mass starts at the specified value, and the main-

tenance of the cycle charge at that value over the dura-

tion of the simulation. While the previous sections of

the paper address how to maintain the cycle charge at

a constant value, this brief section addresses the means

by which a specific value of the cycle charge may be at-

tained. In general, the total refrigerant mass contained

in the cycle at initialization depends on the initial refrig-

erant state in each volume of the system. Because the

refrigerant state at zero mass flow rate is relatively easier

to determine, the system was initialized as this condition

so that the pump speed was zero and there was no heat

flux applied to the pipe or the enthalpy adjuster, and then

these inputs were turned on after the conclusion of the

initialization transient.

The initial conditions for the system were developed

using basic thermodynamic reasoning. The specification

of a value of cycle charge Mtotal for a given system vol-

ume V effectively specifies the average density of the

fluid in the system ρinit ; this specifies one variable that

determines the state of the system. Independent specifi-

cation of one other variable for the system, such as the

system pressure Pinit at zero pump speed and zero heat

flux, determines the state of the refrigerant in the sys-

tem. The specific enthalpy hinit for every component and

control volume can therefore be directly calculated from

this refrigerant state in a set of initial equations. Since it

is common to initialize most components with pressure

and specific enthalpy, these calculated initial values for

the pressure and specific enthalpy of the working fluid

were then used to initialize all of the components in the

system to achieve the desired cycle charge.

4 Results

The models described in Section 3 were implemented in

Modelica and tested to evaluate the efficacy of the pro-

posed strategy for maintaining a constant cycle mass.

Three related models were created with identical geo-

metric parameters and input waveforms. These models

used the R410a refrigerant property model included in

the AirConditioning/ThermoFluidPro library, written by

Modelon (Modelon AB, 2015), as well as the simple

relationship between frictional pressure drop and mass

flow rate described in Equation 20, where ∆P0 = 500 Pa

and ṁ0 = 10 g/s. Other salient parameters of the model

are included in Table 1. These models were tested in sim-

Table 1. Common parameters for the test cycle models.

Parameter Name Value

Pipe diameter 8 mm

Pipe length 12 m

Maximum heat input 130 W/cell

(3120 W total)

Initial pressure 1 MPa

Initial system charge 150 g

Number of pipe control volumes 24

ulation using Dymola 2015 FD01, and were executed on

an i7 PC with 8G of RAM.

Figure 1. Inputs of pump speed (upper) and heat input (lower)

applied to the test cycle.

Because the variations in the cycle charge are related

to phase transitions in the fluid volumes across the liq-

uid saturation line, a series of inputs was designed to re-

peatedly produce these transitions in an effort to induce

variations in the cycle charge. These input waveforms,

both for the pump speed and the heat source, are illus-

trated in Figure 1. After the cycle was initialized with the

specified refrigerant mass and zero mass flow rate, the

pump speed was initially ramped up at 50 seconds from

0 to 1800 rpm over 5 seconds. The resulting transients

were then allowed to subside before ramping up the heat

source at 350 seconds from 0 to 3120 W over 100 sec-

onds, with the heat being distributed equally over each

of the 24 control volumes in the pipe. Finally, a ramp

sawtooth waveform was applied to the pump speed to

repeatedly cause transitions across the liquid saturation

line; the resulting pump speed had a minimum value of

1800 rpm, a maximum value of 2800 rpm, a period of 50

seconds, and a duty ratio of 0.052. All of the simulations

used identical input waveforms, and were integrated by

using the DASSL solver.
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Figure 2. Total cycle mass for three different numerical toler-

ances with identical applied inputs.

The effect of this waveform on the model using P and

h as state variables are illustrated in Figure 2. While

many notable features are evident, perhaps the most

striking is the amount of variability in the total cycle

charge. Such large changes in the total cycle charge can

be quite problematic, as they will have a significant im-

pact on the behavior of the cycle. The amount of varia-

tion in the total cycle mass is strongly correlated with the

tolerance of the solver, suggesting that it is indeed related

to the integration tolerances. Moreover, the changes in

the mass inventory usually occur by steps, suggesting

the presence of a discontinuity that gives rise to these

changes.

Figure 3. Static quality x at the first, second, and third control

volumes in the pipe during the increasing portion of the pump

speed waveform, as well as the total system charge at the same

moment.

Figure 3 illustrates the relation between the discon-

tinuity caused by the changes in the static quality x =
Mvap/Mtotal for control volumes 1, 2, and 3 and the varia-

tions in the total system charge. The dashed line drawn at

t = 603 seconds shows a strong correlation between the

time that the static quality for all three of these control

volumes goes above zero and the time of the step discon-

tinuity in the total system charge. It is also particularly

interesting to note that while the quality of the third con-

trol volume increases above zero a number of subsequent

times in this plot, there are no other variations in the to-

tal system charge. This phenomenon suggests that the

variations in the refrigerant charge are related not only to

a transition across the liquid saturation line, but also to

the rate and duration of this transition. The small magni-

tude of the abrupt excursions over x = 0 for control vol-

umes 1 and 2 which are associated with large changes in

the refrigerant density, as well as the corresponding large

changes in the cycle mass, is compatible with the asser-

tion that the variations in the total system charge could

be caused by the errors in the state variables.

Figure 4. Cycle mass inventory for M(P,ρ) and M(P,h,ρ)
models, with an integration tolerance of 1e-04.

In comparison to the large variations in the total sys-

tem charge exhibited in Figure 2 for the system using

(P,h) as state variables, the minuscule variations present

in Figure 4 demonstrate that the models that use either

(P,ρ) and (P,h,ρ) as state variables have much improved

behavior. The variations in the mass for both of these cy-

cles are on the order of 0.25 milligrams, or 1.7×10−4%

of the total cycle charge. This compares quite favorably

to the output of the simulation of the (P,h) model with

the same tolerance, which resulted in an 82% change in

the total cycle charge. Further reductions in the error tol-

erance for the (P,ρ) and (P,h,ρ) simulations will result

in a corresponding reduction in the variation in the total

cycle charge.

Additional insights can be gained from the informa-

tion contained in Table 2, which compares the errors in

the simulations and the total time required to run each

simulation for different sets of state variables and er-

ror tolerances. The errors in this table were generated

by calculating the maximum deviation between the total

system charge and 150.0 grams, which was the specified

charge. As might be expected, the error in the total sys-

tem charge is far greater for the model with the (P,h)
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Table 2. Max and percentage errors and CPU time for different

choices of state variables and integrator tolerances.

State Var Tol Max Error % Error Time

M(P,h) 1e-4 -122.6 g 81.7% 277 s

1e-5 3.96 g 2.6% 127 s

1e-6 -19.3 g 12.8% 1925 s

M(P,ρ) 1e-4 1.9e-4 g 1.2e-4% 766 s

1e-5 2.0e-4 g 1.3e-4% 1250 s

1e-6 2.0e-4 g 1.3e-4% 1374 s

M(P,h,ρ) 1e-4 2.0e-4 g 1.3e-4% 137 s

1e-5 2.0e-4 g 1.3e-4% 315 s

1e-6 2.0e-4 g 1.3e-4% 450 s

state variables than for the other models. One particu-

larly striking and counterintuitive trend is the decrease in

the simulation time for the (P,h) models that accompa-

nies the reduction in the tolerance from 1e-4 to 1e-5; this

can be attributed to the stiffness of the system of equa-

tions during the abrupt changes in the mass inventory in

the simulation with the higher tolerance. It is also in-

teresting to note that the simulation time for the (P,h)
model with a tolerance of 1e-6 is much greater than for

any of the other simulations for any combination of state

variables. This can potentially be attributed to the pres-

ence of so many discontinuities in the simulation wave-

form due to the changes in the refrigerant mass; since the

solver must take very small time steps past each discon-

tinuity to maintain the specified error tolerance, the sum

effect of these discontinuities is that the average time step

of the solver must be much smaller than might otherwise

be necessary.

Comparison of the simulation time of the (P,h) mod-

els to the (P,ρ) models indicates that the (P,ρ) models

are slower, as expected, because the large variations in

refrigerant density cause the solver to take correspond-

ingly smaller time steps. Finally, it is also evident from

Table 2 that the (P,ρ) and (P,h,ρ) methods have identi-

cal accuracy for practical intents and purposes, but the

time required to run the (P,h,ρ) simulations is much

smaller than that of the (P,ρ) simulations. This can

potentially be attributed to the nonlinear equations that

must be solved to calculate h(P,ρ) when h is not used as

a state variable.

5 Conclusions and Further Work

Over the course of this paper, the causes of variations in

the total system charge were studied and two alternative

selections of the state variables that can essentially elim-

inate such variations were proposed. The effect of these

different state variable selections was demonstrated on

a simplified cycle model, and the manifestations of the

underlying causes for the cycle variation when P and

h are solely used as state variables were examined by

analyzing the simulation output. While both the (P,ρ)
and (P,h,ρ) models had similar accuracy for simulating

the total system charge, the (P,h,ρ) models simulated

much faster because h(P,ρ) does not have to be calcu-

lated when it is also included as a state variable. More-

over, though one ostensible motivation for using (P,h)
as state variables is the speed by which the property cal-

culations can be executed, the dynamics associated with

the variation in total system charge can somewhat iron-

ically result in simulations that take longer to run than

simulations with (P,ρ) as state variables because of the

small step sizes required. Models for refrigerant pipes

that include either (P,ρ) or (P,h,ρ) as state variables

could therefore result in simulations that are both faster

and more accurate than might be possible with a choice

of (P,h) as state variables.

The results obtained in this work may be extended in

a number of directions for future investigation. As sug-

gested in the introduction, an extension of these meth-

ods to models which describe the behavior of refriger-

ant/oil mixtures would be quite valuable. In addition,

an error analysis to rigorously demonstrate the causes

of these cycle variations would clarify the observations

discussed in this paper, and a study of the energy con-

servation for the system might also provide interesting

results. While it is expected that these general trends

would hold for different solvers, choices of the nominal

attributes of the states, or reference values of the specific

enthalpy, further work to explore such trends would be

beneficial. Additional study of alternate thermodynamic

coordinates might also yield fruitful results; for example,

specific entropy is sometimes used to decouple the hy-

draulic and thermal equations describing fluid flow, and

the selection of this or alternate coordinates may also

be relevant to these applications. We hope that future

studies of these and associated phenomena will continue

to yield new insights into these complex and fascinating

systems.

Nomenclature

A cross-sectional area

Ff frictional pressure drop

Ḣ enthalpy flow rate

K proportionality constant for ṁ → ∆P relation

M mass

N pump speed

P pressure

Q̇ heat transfer rate

U internal energy

V volume

h in situ specific enthalpy

h̄ “mixed-cup” specific enthalpy

ṁ mass flow rate

t time

u specific internal energy
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v velocity

ρ density

ρ̂ numerical approximation of density
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