
Reuse of Physical System Models by means of Semantic Knowledge

Representation: A Case Study applied to Modelica

Elena Gallego1, Jose María Álvarez-Rodríguez1 and Juan Llorens1
1 Knowledge Reuse Group,

Department of Computer Science and Engineering,
University Carlos III of Madrid, Spain,

{elena.gallego,jmalvarez,llorens}@kr.inf.uc3m.es

Abstract

This paper presents the design and development of a
solution to store and reuse physical system models by
indexing and retrieving their content and metadata. To
do so, a mapping between the representation modelling
language and a semantic-based representation model
(Relationship-RSHP) is defined. More specifically,
electrical circuits designed in Modelica have been
mapped to RSHP. A two-step process has been designed
and implemented to parse Modelica artifacts and index
the contents into a system knowledge repository.
Afterwards, a case study has also been conducted to
compare text vs. concept based information retrieval
processes. A dataset of 25 electrical circuits and a set of
30 queries have been designed to extract precision and
recall metrics assessing that the presented approach
improves the retrieval of Modelica artifacts. As main
conclusion, it is possible to state that a domain specific
technology such as RSHP for knowledge representation
can help the management of Modelica artifacts as
knowledge assets.

Keywords: Information Representation, Physical

System Models, Modelica Language, Model Reuse,

Knowledge Reuse.

1 Introduction

Cyber-physical systems (CPS), a set of collaborative
computational resources controlling physical entities,
are considered “the next computing revolution”
(Rajkumar et al. 2010) (K.-D. Kim and Kumar 2012).
The design and deploy of these systems is currently
based on the 5C architecture (connection, conversion,
cyber, cognition, and configuration). Physical system
models are designed at different levels of abstraction to
analyze and study the mathematical equations that
govern the CPS under different excitation
configurations.

To do so, software tools (Fritzson 2015) supporting
physical modelling languages are used to design and run
the simulations that represent the physical system model
behavior. During this stage of design and development
a good number of logical artifacts are generated. In this
context and with the aim of easing the development of
the 5C architecture, software developing environments

usually provide libraries of reusable components (M.
Kim et al. 2010) through application patterns (Choi et
al. 2013) and other techniques. These components are
commonly represented in a particular modelling
language and tagged with a predefined set of metadata
properties that can only be accessed from the same
development environment that produced them.

In order to reuse a component, the first step lies on
the capability to search for them through a traditional
interface, filtering the potential results depending on
keywords or fixed values in the metadata fields.

Assuming that a physical system model in some
modelling languages, such as Modelica, is a software
artifact, it is possible then to apply the well-known
techniques for information and software reuse
(Jacobson, Griss, and Jonsson 1997) (Karlsson 1995).
Reuse of information and software may have the
potential of increasing productivity of engineers,
improve quality and create a cost efficient development
environment for cyber-physical systems.

However, the systematic support of reuse is affected
by technical and non-technical issues (Smolárová and
Návrat 1997):
1. Economical, organizational, educational or

psychological issues and
2. Lack of standards to represent all software artifacts,

lack of reusable component libraries or appropriate
tools for boosting reuse among tools.
In the context of technical issues, those considered in

this paper, the classical principles of (software) reuse:
abstraction, selection, specialization and integration,
can be found in a very good number of works (Jacobson,
Griss, and Jonsson 1997) (Karlsson 1995) (Mcilroy
1969). In particular, abstraction (management of the
intellectual complexity of an artifact) can be considered
the essential feature for any reuse technique in order to
specify when an artifact could be reused and how to
reuse it. Selection refers to the discovery of artifacts
covering from the representation and storage to the
classification, location and comparison. Specialization
consists on the set of parameters and transformations
required to reuse an artifact, while integration refers to
the capability of systems to communicate, collaborate
and exchange data.

DOI
10.3384/ecp15118747

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

747

Thus, the reusability factor of artifacts will directly
depend on how they are abstractly described, how they
can be selected and specialized for reuse, and how they
will integrate in the new complete system.

Currently, knowledge management has gained
momentum in the software domain as a means to elevate
the meaning of the implicit knowledge represented into
software pieces. Software is becoming a commodity that
is embedded in any work product or business process,
being a new kind of intellectual asset that can be used to
reduce costs and time to market by generating
competitive advantage.

In this light, knowledge management techniques
(Nonaka and Takeuchi 1995) can be applied to capture,
structure, store and disseminate software-based artifacts
to directly support the aforementioned software reuse
principles of selection and integration. However, the
selection of a proper knowledge management
mechanism is still an open issue (Hull and King 1987)
due to the fact that a suitable representation model can
be reached in several ways.

In the context of cyber-physical systems
development, physical system models seem to be a good
candidate to take advantage of knowledge management
and reuse techniques. Based on this concept, the
Modelica modelling language (Fritzson and Engelson
1998) (Fritzson 2015) provides a comprehensible model
data structure (Schamai, Fritzson, and Paredis 2013) in
which it is possible to develop, design and run
simulations.

However, there is much more at stake than the simple
representation in a modelling language. Physical
systems are represented by equation systems or by
graphical models that represent their behavior. This
valuable information must be organized and stored to be
able to provide high-accurate information retrieval
processes. One of the main challenges emerges from the
complexity to transform physical systems into a logical
structure that can be modeled and understood by
knowledge management tools.

Semantic knowledge representation models appeared
around year 2000 to cope with complex information
representation problems. The most representative
example of them can be Resource Description
Framework (RDF) (Hayes 2004) and RSHP
(pronounced “arship”) (Llorens, Morato, and Genova
2004). RDF was created from the beginning to cope with
web information management while RSHP’s main goal
was to represent information from all industrial work-
products.

In order to overcome the existing limitations on
reusing physical system models knowledge, a mapping
between the Modelica modelling language and the
RSHP information representation model is defined and
implemented (Modelica2RSHP). Due to the intrinsic
RSHP capabilities, it is possible to represent any kind of
information such as textual descriptions, design models,

code or even any piece of relation data under the same
schema. A tool implementation for managing industrial
work products has been developed by The Reuse
Company (The Reuse Company Inc. 2014), named
knowledgeMANAGER, enabling the possibility of
applying knowledge management techniques to
engineering domain.

As motivating example, Figure 1 shows a simple
amplifier circuit comprising different electrical
elements. This block could certainly be reused in
different cyber-physical systems. However, in order to
allow reuse the proper mechanisms must be provided to
represent the elements and relationships within the
circuit (metadata and contents), to store such elements
in a repository, to define a retrieval algorithm that would
allow the identification of physical models by content
and to retrieve the block according to different queries.
For instance, an engineer should be able to look up this
circuit, see Figure 1, by expressing the next query: “Give

me all electrical circuits that contain a sine voltage

source directly connected to an operational amplifier by

a 20kΩ resistor”. In current Modelica environments,
these tasks are hard to accomplish since they were not
designed for these purposes. Advanced regular
expressions could be a solution but an approach taking
advantage of describing elements and relationships can
really improve the retrieval of Modelica artifacts
boosting the reusability factor of existing physical
system models.

Figure 1. Simple Amplifier circuit which uses an
operational amplifier (see example in Electrical-Analog
circuits in OpenModelica).

2 Physical system models as software

artifacts

Software reuse (Smolárová and Návrat 1997) as a
discipline has been widely studied and surveyed from
different perspectives. Reuse depending on software
metrics and models (Frakes and Terry 1996), reuse of
software libraries (A. Mili, Mili, and Mittermeir 1998),
software repositories (Guo and others 2000),
components in the industry (Land et al. 2009), success

Reuse of Physical System Models by means of Semantic Knowledge Representation: A Case Study applied to
Modelica

748 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118747

factors (Basili and Rombach 1991) and reuse in software
product lines (Thüm et al. 2014). In all of them, the
different authors have explored and classified the
mechanisms to store and retrieve software assets. One
of the main conclusions in these studies is that
successful reuse will come with sophisticated software
components storage, representation and retrieval
techniques. In this light, the authors in (Guo and others
2000) define a set of orthogonal attributes and six broad
classes of methods for software reuse. They also
establish criteria (technical, managerial and human
factors) to assess and compare classes of methods for
software reuse.

Other very relevant works have been focused on
applying control engineering techniques (H. Mili 2002)
for software reuse. Although some of good experiences
have been reported (Tracz 1995), success and failure
facts outlined in (Morisio, Ezran, and Tully 2002) and
(Desouza, Awazu, and Tiwana 2006) are still open. This
situation of software reuse is becoming critical in cyber-
physical systems where the time to design, develop and
deploy a system is more complicated due to the
collaboration with other software and hardware
components.

2.1 Physical system models sharing and reuse

When thinking about models reuse, engineers have to
deal with the underlying information of a shared model
and its relation with the design. Human experience is
important to correctly understand, share or reuse models
efficiently, while machines usually fail because of the
tacit knowledge involved.

In (Winsberg 2001) the authors present a semantic
driven design reuse for a 3D scene designed by
computing the properties while modelling and enabling
the system to recognize similar types by a vertex statics
based algorithm.

As (Groza et al. 2009) outlines, over 20 billion CAD
models exist with similar geometric aspects. Currently,
indexers use alphanumeric numbers with different
formats for each group. The developer could be able to
design new models based on existing ones and reuse
their similar components. More than 75% of new
models design could be reused from previous models
ensuring that the model fulfills the functionality for
which it has been designed.

After this brief analysis, there are many technical
problems (including data protection or copyrights) to
create agreed knowledge-based representations such as
ontologies that can ease the sharing and reuse of
physical system models produced by different tools.

One of the most necessary elements, once a common
knowledge representation is defined, is to have a good
search engine supported by domain knowledge. This is
the main goal for future works, to be able not only to
store physical system models, but also to look for similar

models and retrieve their information using concepts
and relationships.

Functional Mock-up Interface (FMI) is described in
(Otter, Blochwitz, and Arnold 2013) as a solution to
model sharing and reuse. FMI allows to work with
different simulation environments, as Modelica,
Simulink and SIMPACK just in one interface to
enhance model sharing avoiding incompatibilities.

Using current design tools it is possible to get both
analytical and visual representation for every developed
physical system model.

The analytical information describes the physical
laws that model the system while the visual
representation usually shows them graphically. Visual
information represents a simplified view of the world
that the system is modelling. When thinking about reuse
of physical models, the approach should be to work with
the analytical information, because of the knowledge
contained. The analytic part of a model represents the
different behaviors that could be in the real world for
many configurations.

That is why; the choice made in this work is to index
the analytical information of any physical system
model, which can be complemented by graphical
information when retrieving it easing the understanding
of the underlying knowledge.

3 Physical System Models

The complex world where we live has the inherited
characteristic to be governed by physic laws, which
humans continuously try to control. Every physical
system that engineers want to better understand has
elements that behave according to a set of physical laws
(Winsberg 2001).

Physical systems models represent the reality by
means of relationships between physical and
mathematical theories and their effect in the reality.
There exist many ways to design physical system
models but, almost all of them, are constructed under the
same theories.

Therefore, if we are aware of the elements that define
the system and the physical laws that govern it, we have
the required information of the physical system model,
in order to get the knowledge, with different abstraction
levels, which can be used in other processes or projects.

Physical system models can be as complex as the
reality they represent, thus, it is needed to clearly define
the purpose of the model in order to get a reasonable
result.

The goal, when modelling physical systems, is to get
a mathematical representation of the system’s behavior
in terms of its variables. Depending on the nature of the
system, electrical, mechanical or thermal, the system
variables change. Despite of the differences, a common
concept between the disciplines is energy, so it is
possible to design the physical components of the
system as energy manipulators (Wellstead)

Session 10C: Modelica Tools

DOI
10.3384/ecp15118747

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

749

Physical system models are built to represent the real
world where the model is going to be used and its
response to particular stimuli. The needs to create
physical system models are described in (Valášek et al.
2003) as the real world system, the question to be
answered by the simulation of the model, and the
interpretation of the output is the solution.

3.1 Physical systems modelling environments

There are many models design environments that offer
different capabilities depending on the domain.

Modelica-based modelling and simulation
environments such as Dymola (Dempsey 2006),
OpenModelica (Asgha and Tariq 2010) or JModelica
(Åkesson et al. 2010), are examples of integrated
development environments that make easier the visual
development of models in domains such as: electric,
mechanic or thermodynamic.

More specifically, the Modelica language is an
object-oriented programming language that allows
physical systems modelling. Models can be expressed
by differential, algebraic and discrete equations.
Modelica allows reuse and share models by reducing the
modelling effort (Martin-Villalba, Urquia, and Dormido
2008). Nevertheless, the knowledge management
capabilities of these environments are restricted as it has
been outlined in the introduction.

4 Knowledge representation of Physical

System Models

In order to provide the proper knowledge management
services for cyber-physical systems, it is necessary to
select an adequate knowledge representation paradigm.
Obviously, different types of knowledge require
different types of representation (Davis, Shrobe, and
Szolovits 1993) (Groza et al. 2009). In this light,

expressions, rule-based systems, regular grammars,
semantic networks, object-oriented representations,
frames, intelligent agents or case-based models, to name
just a few, are some of the main approaches to
information and knowledge modelling.

More specifically, knowledge management also
implies the standardization of data and information, that
is, any block of information must be structured and
stored for supporting other application services.

In this context, two main approaches can be
highlighted: 1) the ISO 10303-STEP (“Standard for the
Exchange of Product model data”), is an standard for the
computer-interpretable representation and exchange of
product manufacturing information and 2) the Open
Services for Lifecycle Collaboration (Ryman, Hors, and
Speicher 2013) (OSLC), an OASIS standard, that is
seeking new methods to easily integrate System
Engineering tools and build an ideal development and
operations environment with special focus on
interoperability.

Although both approaches represent very relevant
actions to standardize and provide interoperable
environments for developing complex systems, they do
not directly define a knowledge model (Alvarez-
Rodríguez et al. 2015) for representing metadata and
contents of work products and artifacts. Besides, it has
been demonstrated that the retrieval of information
resources does not imply the need of any underlying
logic formalism but a powerful framework for
expressing concepts and relationships. Due to this fact
and previous experiences (Alvarez-Rodríguez et al.
2015), the RSHP universal knowledge representation
model has been selected as meta model to semantically
describe the elements and relationships that can be
found in a physical system model.

Figure 2. The RSHP representation model in UML.

Reuse of Physical System Models by means of Semantic Knowledge Representation: A Case Study applied to
Modelica

750 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118747

4.1 RSHP in a nutshell

The RSHP universal knowledge representation model
(Llorens, Morato, and Genova 2004), see Figure 2, is
based on the ground idea that whatever information can
be described as a group of relationships between
concepts forming a conceptual graph. For example,
Entity/Relationship data models (Chen 1976) are
certainly represented as relationships between entities,
processes can be represented as causal/sequential
relationships between sub-processes, UML (Unified
Modelling Language) or SysML meta models can also
be modeled as a set of relationships between meta model
elements, etc. Furthermore, free text information can
certainly be represented as relationships between terms
by means of the same structure. To represent human
language text, a set of well-constructed sentences,
including the subject + verb + predicate (SVP) should
be used. The SVP structure can be then considered as a
relationship typed V between the S and the predicated
P. RSHP includes a repository model to store
information and relationships with the aim of reusing all
kind of knowledge chunks. The RSHP formal
representation model, see Figure 2, is based on the
following principles:

 The main description element is the
relationship since it is the element in charge of
linking knowledge elements.
 A Knowledge Element (KE) is an atomic

knowledge brick that appears into an artifact and that
is linked by one or more relationships with other KEs,
to build information. It is defined by a concept, and it
can also be an artifact (an information container
found inside a wider artifact). A concept is
represented by a normalized term (a keyword coming
from a controlled vocabulary, or domain). Artifacts
are knowledge containers of KEs and their
relationships.
In RSHP, the simple representation model for

describing the content of whatever artifact type
(requirements, risks, models, tests, maps, text docs or
source code) should be:

RSHP representation for artifact
α = �α = {ሺRSHPଵሻ, ሺRSHPଶሻ, … , ሺRSHP୬ሻ}

where every single RSHP is called RSHP-description
and must be described using KE.

One important consequence of this representation
model is that there is no restriction to represent a
particular type of knowledge. Furthermore, RHSP has
been used as underlying information model to build
general-purpose indexing and retrieval systems, domain
representation models (Dı́az et al. 2005), quality
assessment of requirements and knowledge
management tools such as knowledgeMANAGER (The
Reuse Company Inc. 2014) .

4.2 Mapping the Modelica language to RSHP

The use of Modelica as language for modelling complex
physical systems is gaining momentum in the industry
domain (Samlaus and Fritzson 2015). On the other hand,
RSHP has been used for a long time in the Systems
Engineering discipline for knowledge management.
Given this situation, a strategy to map Modelica
physical system models to RSHP must be defined. To
do so a direct mapping is defined to perform simple
transformations and to provide a basis for defining and
comparing more complex transformations.

In order to design this direct mapping, both models
are represented using the commonly defined abstract
data types set and list. The definitions follow a type-as-
specification approach (Schamai, Fritzson, and Paredis
2013); thus models are based on dependent types that
can also include cardinality. More specifically, Table 1
and Table 2 show both specifications as a kind of regular
tree grammars that can be used to specify a rule-based
transformation between two grammars (denotational
semantics). Thus, a transformation between a partial set
of production rules of the Modelica language and RHSP
can be defined as a function, Mode��caʹRSHP, that
takes the Modelica grammar (v3.2), GM୭ୢୣ୪iୡa, a valid
Modelica model, Mode��ca୩, the RSHP grammar GୖୗHP
and a set of direct mapping rules, ��ௗ��ଶ௦ℎ (see
Table 3 where sub-indexes refer to attributes and
relationships of the elements), to generate a valid ܴܵܪ ܲ�ℎ.

:ܲܪܴܵʹ�ܿ��݁݀� �ௗ��ܩ × �ܿ��݁݀� × ×��ோௌܩ ��ௗ��ଶ௦ℎ → ܪܴܵ ܲ�ℎ

Table 1. Selected Production rules of the Regular Tree
Grammar of Modelica: ࢉ�ࢋࢊ�ࡳ�

(1) class_definition ::= class_prefixes

class_specifier

(2) class_prefixes ::= (model)

(3) class_specifier::= long_class_specifier |

(4) short_class_specifier

(5) long_class_specifier ::=

 IDENT string_comment composition end IDENT

| extends IDENT [class_modification]

(6) string_comment composition end IDENT

(7) short_class_specifier
::= IDENT "=" base_prefix name [array_subs

cripts] [class_modification] comment

 | IDENT "=" enumeration "(" ([enu

m_list] | ":") ")" comment

(8) component_clause ::= type_prefix

type_specifier [array_subscripts]

component_list

(9) type_specifier ::= name

(10) name ::= ["."] IDENT {"." IDENT }

(11) component_list ::= component_declaration {
"," component_declaration }

(12) component_declaration ::=declaration

[condition_attribute] comment

(13) declaration ::= IDENT [array_subscripts]

[modification] ->KE | Term

Session 10C: Modelica Tools

DOI
10.3384/ecp15118747

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

751

(14) connect_clause ::= connect "("

component_reference "," component_reference

")

(15) component_reference ::= ["."] IDENT

[array_subscripts] {"." IDENT

[array_subscripts] }

Table 2. Regular Tree Grammar of RSHP: ࡼࡴࡿࡾࡳ

(1) Artifact ::= (Set(RHSP), MetaProperty{0,*})

(2) RSHP ::= (Subject, Verb, Object, Semantics)

(3) Subject ::= KE {0,1}

(4) Verb ::= KE {0,1}

(5) Object ::= KE {0,1}

(6) KE :: = (Term {0,1}) | Artifact

(7) Term ::= (lexicalForm, languageTag,

TermTag)

(8) TermTag ::= lexicalForm

(9) MetaProperty ::= (Tag, Value)

(10) Tag ::= {KE, lexicalForm}

(11) Value ::= {KE {0,1}, lexicalForm {0,1}}

(12) SemanticCluster ::= (Term)

Table 3. Set of mapping rules ��ࢉ�ࢋࢊ�ࢎ࢙࢘ to transform
Modelica physical system models into RSHP

(1) class_definition ::= Artifact

(2) class_prefixes ::= MetaProperty

(Tag=“type“, Value=“model“)
(3) class_specifier::= long_class_specifier |

short_class_specifier

(4) long_class_specifier ::=

Artifact(physical_name=IDENT)

(5) short_class_specifier ::=

Artifact(physical_name=IDENT)

(6) component_clause ::= type_prefix

type_specifier [array_subscripts]

component_list

(7) type_specifier ::= name

(8) name ::= SemanticCluster (Term=IDENT)

(9) component_list ::= component_declaration {
"," component_declaration }

(10) component_declaration ::= declaration [

condition_attribute] comment

(11) declaration ::= KE (Term = IDENT)

(12) connect_clause ::=RSHP(KE, KE, KE, KE)

(13) component_reference ::= KE (Term = IDENT)

Although, the presented mapping does not cover all
production rules in ܩ�ௗ��, it is correct since only
valid Modelica and RSHP models will be accepted and
generated.

1 The CAKE (Computer Aided Knowledge Environment)
API (Application Programming Interface).
2http://trac.jmodelica.org/browser/trunk/Compiler/Modeli
caCompiler

4.3 Implementation details

In order to implement the mapping rules presented in
Table 3, a stepwise process has been carried out. Taking
into account that RSHP and its underlying technology
(the CAKE API1) are implemented in the .NET platform
and considering the diversity of Modelica parsers, we
selected the option of building the JModelica sources
(Java) for Modelica version 3.2.

More specifically, the last JModelica sources2 were
checked out (January 2015) and built using Apache Ant
for Java. Afterwards, a JAR (Java Archive) analyzer
tool3 was used to extract the dependencies between the
different Java libraries and to generate a script that
transformed the required Java libraries to .NET DLLs
(Dynamic-link library).

This approach was enough to demonstrate the
possibility of integrating a Modelica parser in the .NET
platform. Thus, it is possible now to offer a universal
information representation model to index and retrieve
physical system models metadata and contents.

Figure 3. Process to index, search and retrieve a
physical system model.

These DLLs are then interpreted in .NET through the

IKVM4 (a Java interpreter for this platform) providing
a port and implementation of the Modelica parser.
Finally, this set of .NET libraries are used to implement
the set of mapping rules in Table 3 and to connect to the
CAKE API as Figure 3 shows. Moreover, the
knowledgeMANAGER tool can be used to manage all
the generated artifacts, see Figure 4.

3 https://code.google.com/p/jar2ikvmc/
4 http://www.ikvm.net/

Reuse of Physical System Models by means of Semantic Knowledge Representation: A Case Study applied to
Modelica

752 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118747

Figure 4. Representation of the physical system models in knowledgeMANAGER

5 Case Study: Indexing and retrieval of

Modelica physical system models

To illustrate the approach for reusing physical models, a
case study based on the comparison of precision and
recall measures of the two approaches to retrieve
physical system models (OpenModelica vs
knowledgeMANAGER) is presented below.

Figure 5. Example of physical system model retrieval in
knowledgeMANAGER.

5.1 Research design

One of the main stages in a reuse process consists on
looking up the proper artifacts according to a set of
preferences or query. This can be interpreted as a search
system in which given a query (text-based or even a
target model) and a set of resources (a set of physical
models), it is necessary to stablish which are the best

models that match the input query. To do so, the
following steps will be carried out:
3. Design a domain-based vocabulary, ܱ, to represent

the concepts and relationships that will be used to
represent physical models. In this case, the built in
domain ontology in the knowledgeMANAGER has
been used. It is actually a taxonomy comprising three
main entities: System, Subsystem and Component
and hierarchy relationships (part-of, is-a,

broader/narrower).
4. Define a test dataset of physical models

specifications � = {݀ଵ, ݀ଶ, … , ݀ , … , ݀}. To do
so, the public dataset of electrical circuits available
in OpenModelica has been selected. This dataset
comprises 25 physical system models for electrical
circuits that have been also indexed in
knowledgeMANAGER, see Figure 4.

5. Define a set of queries and expected results, Q where
each query ݍ will return a set of physical models �.
To do so, a random walk process on top of the dataset � has been implemented to automatically generate
search queries based on the combination of the
different elements that can be found in a circuit
(between 1-5). Afterwards, a panel of three experts
has validated the expected circuits for every query,
see Table 4. ܳ = { ሺݍଵ, �ଵሻ, ሺݍଶ, �ଶሻ, … ሺݍ , �ሻ … , ሺݍ, �ሻ}.

6. Run the indexing and retrieval processes
implemented on top of the knowledgeMANAGER
APIs and the OpenModelica editor. See an example
in Figure 5.

7. Extract measures of precision (ܲሻ, recall (ܴሻ and the
F1 score (the harmonic mean of precision and recall)
making a comparison of the expected and generated
results. Being ܲ = ௧௧+, ܴ = ௧௧+ and , ܨͳ = ଶ �∗ோ�+ோ where given a target dataset of physical

Session 10C: Modelica Tools

DOI
10.3384/ecp15118747

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

753

models, � , and a query ݍ which expected results is
the set �:

 � (true positive) is the number of physical models

in � that have been retrieved and are in � ,
 ݂ (false positive) is the number of physical models

in � that have been retrieved and are not in �,

 �݊ (true negative) is the number of physical models

in � that have not been retrieved and are not in �
and

 ݂݊ (false negative) is the number of physical models

in � that have not been retrieved and are in �.

Table 4. Set of queries to search for physical system
models. ࡽ Human-based query ݍଵ Step voltage source with an RLC filter ݍଶ LC filter with any kind of voltage source ݍଷ Step voltage source connected to a filter with at least

two capacitors ݍସ Step voltage source and operational amplifier ݍହ Comparator operational amplifier ݍ Diode connected to a sine voltage source ݍ Ideal Operational amplifier integrator ଼ݍ Rectifiers with ideal diodes ݍଽ Sine voltage source connected to a load by a diode ݍଵ Sine voltage source connected to a load by two ideal
thyristors ݍଵଵ Sine voltage source connected to a load by one ideal
thyristor ݍଵଶ Circuits with thermal resistor and LC filter ݍଵଷ Sine voltage source connected to a potentiometer
(variable resistor) before a RC filter ݍଵସ Sine voltage source connected to a potentiometer
(variable resistor) ݍଵହ Rectifiers with inductances to any load ݍଵ Inductance filter to a sine voltage source ݍଵ Sine voltage source connected to a potentiometer to
supply a resistive load ݍଵ଼ Circuits with sine voltage source and a variable resistor ݍଵଽ Sine voltage source connected to a resistor ݍଶ Constant voltage source connected to a LR filter by a
switch ݍଶଵ Constant voltage source connected to a load by a switch ݍଶଶ Sine voltage source and operational amplifier ݍଶଷ Simplified transformer connected to a resistive load by
resistors ݍଶସ Simplified transformer connected to a resistive load by
inductors ݍଶହ Ideal transformer connected to a sine voltage source ݍଶ switch controlled by a sine voltage source ݍଶ Sine voltage source with an RLC filter ݍଶ଼ Sine voltage source connected to a transistor ݍଶଽ Circuit whit thermal conductor and heat capacitor ݍଷ Sine voltage source connected to a capacitive load

8. Check the robustness of the comparison by
performing statistical hypothesis testing.

5.2 Results and Discussion

Table 5 shows the metrics of precision, recall and the F1
measure of the different executions. The first column
corresponds to the query identifier; the next three
columns contain the metric values when the
OpenModelica search capabilities are used to look up
circuits. After that, the second experiment shows the
metric values when the presented approach
implemented on top of knowledgeMANAGER is
executed. According to the results, it seems clear that the
presented approach is better than the results provided by
OpenModelica, as Figure 6 depicts. The main reason of
this behavior is due to the fact that the presented
approach can take advantage of exploiting semantic
relationships (knowlegeMANAGER) while the text-
based approach (OpenModelica) can only perform
string comparisons.

Nevertheless, the precision values can be improved
and higher-values would be expected in both
approaches. In the case of knowledgeMANAGER, this
is because of the detail of the query, when it has more
components to compare, the precision is higher. The
tool prefers not to return false positives keeping
precision higher.

 On the other hand, a statistical hypothesis testing has
been carried out to demonstrate if results will vary
depending on the type of method or tool used to search
physical models. To do so, a comparison of the precision
values of both tools and approaches has been formulated
through the next hypotheses: ࡴ: There is no change in the calculation of precision
when searching using OpenModelica or
knowledgeMANAGER. ࡴ: There is change in the calculation of precision when
searching using OpenModelica or
knowledgeMANAGER.

In order to run the statistical hypothesis testing, the
F-Test with alpha 0.05 has been carried out to ensure
that variances are unequal (there is statistical
significance). After that, the t-Test of two-sample
assuming unequal variances has been performed with
alpha 0.05 to assert whether ܪ is rejected or not.
According to Table 6, ܪ can be rejected, since the t
Stat is less than “-t Critical (two tail)”. In conclusion, the
knowledgeMANAGER tool method exploiting
semantic relationships can improve in terms of precision
the problem of retrieving the proper physical system
models.

Reuse of Physical System Models by means of Semantic Knowledge Representation: A Case Study applied to
Modelica

754 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118747

Table 5. Precision and recall metrics for a retrieval process
in OpenModelica and knowledgeMANAGER.

 OpenModelica knowledgeMANAGER ܳ P R F1 P R F1 ݍଵ 0.017 0.500 0.032 1.000 0.080 0.148 ݍଶ 0.017 1.000 0.033 1.000 0.040 0.077 ݍଷ 0.034 1.000 0.066 1.000 0.120 0.214 ݍସ 0.200 1.000 0.333 1.000 0.080 0.148 ݍହ 0.300 1.000 0.462 1.000 0.083 0.154 ݍ 0.018 1.000 0.035 1.000 0.000 0.000 ݍ 0.300 1.000 0.462 1.000 0.083 0.154 ݍ 0.080 0.042 1.000 0.069 1.000 0.036 ଼ݍଽ 0.006 0.500 0.012 1.000 0.042 0.080 ݍଵ 0.000 0.000 N/A 1.000 0.000 0.000 ݍଵଵ 0.000 0.000 N/A 1.000 0.000 0.000 ݍଵଶ 0.000 1.000 0.000 1.000 0.000 0.000 ݍଵଷ 0.002 1.000 0.004 1.000 0.040 0.077 ݍଵସ 0.004 1.000 0.008 0.333 0.045 0.080 ݍଵହ 0.006 0.500 0.012 0.500 0.043 0.080 ݍଵ 0.000 0.000 N/A 0.200 0.056 0.087 ݍଵ 0.002 1.000 0.004 1.000 0.040 0.077 ݍଵ଼ 0.002 1.000 0.004 1.000 0.000 0.000 ݍଵଽ 0.100 1.000 0.182 0.500 0.048 0.087 ݍଶ 0.077 1.000 0.143 0.500 0.042 0.077 ݍଶଵ 0.077 0.500 0.133 0.500 0.043 0.080 ݍଶଶ 0.100 1.000 0.182 0.333 0.043 0.077 ݍଶଷ 0.007 1.000 0.015 1.000 0.040 0.077 ݍଶସ 0.007 1.000 0.015 1.000 0.040 0.077 ݍଶହ 0.007 1.000 0.015 1.000 0.040 0.077 ݍଶ 0.011 1.000 0.022 1.000 0.040 0.077 ݍଶ 0.000 1.000 0.000 1.000 0.000 0.000 ݍଶ଼ 0.011 0.500 0.022 1.000 0.042 0.080 ݍଶଽ 0.006 1.000 0.011 0.667 0.083 0.148 ݍଷ 0.000 0.000 N/A 1.000 0.000 0.000

Table 6. The t-Test of two-sample assuming unequal
variances to compare OpenModelica vs
knowledgeMANAGER for physical models retrieval.

OpenModelica

Precision

knowledgeMANAGER

Precision

Mean 0.044886824 0.851111111

Variance 0.006732369 0.068102171

Observations 30 30

Hypothesized 0

Df 35

t Stat -16.14230163

P(T<=t) one-tail 4.32626E-18

t Critical (one tail) 1.689572458

P(T<=t) two tail 8.65252E-18

t Critical (two tail) 2.030107928

Figure 6 Precision and recall for every query and
approach.

5.3 Research Limitations

Some key limitations of the presented work must be
outlined. The first one relies on the sample size; our
research study has been conducted in a closed world.
More specifically, the physical models have been taken
from a public repository and the set of queries has been
automatically generated through a random walk process.
That is why results in a broad or real scope could
change, in terms of precision, since more complex
relationships in circuits and queries could be designed.
Nevertheless, the research methodology, the design of
experiments and the creation of a kind of benchmark for
testing retrieval processes have been demonstrated to be
representative and creditable.

Regarding the generation of queries, the process
creates queries similar to the way a domain expert would
do. In this case, we have focused on a random
combination of circuit elements due to the fact that the
handmade creation of queries requires a more in-depth
analysis of every circuit. This situation also implies a
high probability of losing robustness due to the fact that
the same domain can be interpreted according to
different experts and domain discourses. However, we
consider that the precision and recall metrics are helpful
to make a first estimation of the advantages of using a
domain ontology and knowledge representation
mechanisms to retrieve physical models.

Besides, it has not been possible to fully compare
both OpenModelica Connection Editor with
knowledgeMANAGER because of the structure of the
queries. In the text-based browser of OpenModelica it is
complicated to look for several components at the same
time and no advanced query mechanisms such as regular
expressions are available. That is why, the precision is
lower but the recall is most of times very high.

Building on the previous comments, we cannot either
figure out the internal budget, methodologies, domain
vocabularies, experience and background of specific
domain-experts to create and query physical models.
We merely observe and re-use existing public and on-
line knowledge sources to provide an accurate
information reuse process for physical model artifacts.

Session 10C: Modelica Tools

DOI
10.3384/ecp15118747

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

755

6 Conclusions and Future Work

Physical system models are not anymore isolated pieces
of code to design a physical system. Current trends to
develop and deploy cyber-physical systems imply the
need of applying knowledge management techniques to
save time and to develop safer and more secure systems.
In this context, the reuse of existing and well-tested
knowledge embedded into physical system models is a
challenging task that can be carried out by using the
proper mechanism for knowledge management. The
RSHP representation model offers a flexible technique
to represent any kind of knowledge through concepts
and relationships. It also includes technology support
through the knowledgeMANAGER tool. It seems clear
that the shifting of the underlying information in
physical system models to a more adequate
representation improves the capabilities to discover and
reuse existing knowledge.

As future work, we plan to extend the approach to any
kind of physical system model (full support to the
Modelica language) providing semantic engines for
indexing and retrieving information. Furthermore, we
will extend the experiments to make comparisons in a
broad scope (tools, models and queries) releasing also
the information under the principles of the OpenScience
initiative.

Acknowledgements

The research leading to these results has received
funding from the ARTEMIS Joint Undertaking under
grant agreement Nº 332830-CRYSTAL (CRitical
sYSTem engineering AcceLeration project) and from
specific national programs and/or funding authorities.
This work has been supported by the Spanish Ministry
of Industry.

References

Åkesson, J., K. E. Årzén, M. Gäfvert, T. Bergdahl, and H.
Tummescheit 2010 Modeling and Optimization with
Optimica and JModelica.org-Languages and Tools for
Solving Large-Scale Dynamic Optimization Problems.
Computers and Chemical Engineering 34(11): 1737–1749.

Alvarez-Rodríguez, Jose Maria, Juan Llorens, Manuela
Alejandres, and Jose Fuentes 2015 OSLC-KM: A
Knowledge Management Specification for OSLC-Based
Resources. In Proceedings of the 25th Annual INCOSE
International Symposium (Accepted).

Asgha, Syed Adeel, and Sonia Tariq 2010 Design and
Implementation of a User Friendly OpenModelica
Graphical Connection Editor.

Basili, V. R., and H. D. Rombach 1991 Support for
Comprehensive Reuse. Softw. Eng. J. 6(5): 303–316.

Chen, Peter Pin-Shan 1976 The Entity-Relationship
Model—toward a Unified View of Data. ACM
Transactions on Database Systems (TODS) 1(1): 9–36.

Choi, Jong-Seok, Tim McCarthy, Maneesh Yadav, et al. 2013
 Application Patterns for Cyber-Physical Systems. In

Cyber-Physical Systems, Networks, and Applications
(CPSNA), 2013 IEEE 1st International Conference on Pp.
52–59. IEEE.

Davis, Randall, Howard Shrobe, and Peter Szolovits 1993
What Is a Knowledge Representation? AI Magazine 14(1):
17.

Dempsey, Mike 2006 Dymola for Multi-Engineering
Modelling and Simulation. 2006 IEEE Vehicle Power and
Propulsion Conference, VPPC 2006.

Desouza, Kevin C., Yukika Awazu, and Amrit Tiwana 2006
Four Dynamics for Bringing Use Back into Software Reuse.
Commun. ACM 49(1): 96–100.

Dı́az, Irene, Juan Llorens, Gonzalo Genova, and José Miguel
Fuentes
 2005 Generating Domain Representations Using a
Relationship Model. Information Systems 30(1): 1–19.

Frakes, William, and Carol Terry 1996 Software
Reuse: Metrics and Models. ACM Computing Surveys
(CSUR) 28(2): 415–435.

Fritzson, Peter 2015 Principles of Object-Oriented
Modeling and Simulation with Modelica 3.3: A Cyber-
Physical Approach. 2. ed. New York: John Wiley & Sons
Inc.

Fritzson, Peter, and Vadim Engelson 1998 Modelica - A
Unified Object-Oriented Language for System Modelling
and Simulation. In ECOOP’98 - Object-Oriented
Programming, 12th European Conference, Brussels,
Belgium, July 20-24, 1998, Proceedings Pp. 67–90.
http://dx.doi.org/10.1007/BFb0054087.

Groza, Tudor, Siegfried Handschuh, Tim Clark, S
Buckingham Shum, and Anita de Waard 2009a A
Short Survey of Discourse Representation Models.

Groza, Tudor, Siegfried Handschuh, Tim Clark, S
Buckingham Shum, and Anita de Waard 2009b A
Short Survey of Discourse Representation Models.

Guo, Jiang, and others 2000 A Survey of Software Reuse
Repositories. In Engineering of Computer-Based Systems,
IEEE International Conference on the Pp. 92–92. IEEE
Computer Society.

Hayes, Patrick 2004 RDF Semantics. World Wide
Web Consortium. http://www.w3.org/TR/rdf-mt/.

Hull, Richard, and Roger King 1987 Semantic Database
Modeling: Survey, Applications, and Research Issues.
ACM Computing Surveys (CSUR) 19(3): 201–260.

Jacobson, Ivar, Martin Griss, and Patrik Jonsson 1997
Software Reuse: Architecture, Process and Organization for
Business Success. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co.

Karlsson, Even-André, ed. 1995 Software Reuse: A
Holistic Approach. New York, NY, USA: John Wiley &
Sons, Inc.

Kim, Kyoung-Dae, and Panganamala R Kumar 2012 Cyber–
physical Systems: A Perspective at the Centennial.
Proceedings of the IEEE 100(Special Centennial Issue):
1287–1308.

Kim, Minyoung, M-O Stehr, Jinwoo Kim, and Soonhoi Ha
2010 An Application Framework for Loosely Coupled
Networked Cyber-Physical Systems. In Embedded and

Reuse of Physical System Models by means of Semantic Knowledge Representation: A Case Study applied to
Modelica

756 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118747

Ubiquitous Computing (EUC), 2010 IEEE/IFIP 8th
International Conference on Pp. 144–153. IEEE.

Land, Rikard, Daniel Sundmark, Frank Lüders, Iva Krasteva,
and Adnan Causevic 2009 Reuse with Software
Components-a Survey of Industrial State of Practice. In
Formal Foundations of Reuse and Domain Engineering Pp.
150–159. Springer.

Llorens, Juan, Jorge Morato, and Gonzalo Genova 2004
RSHP: An Information Representation Model Based on
Relationships. In Soft Computing in Software Engineering.
Ernesto Damiani, Mauro Madravio, and LakhmiC. Jain,
eds. Pp. 221–253. Studies in Fuzziness and Soft Computing.
Springer Berlin Heidelberg. http://dx.doi.org/10.1007/978-
3-540-44405-3_8.

Martin-Villalba, Carla, Alfonso Urquia, and Sebastian
Dormido 2008 An Approach to Virtual-Lab
Implementation Using Modelica. Mathematical and
Computer Modelling of Dynamical Systems 14(4): 341–
360.

Mcilroy, Doug 1969 Mass-Produced Software Components.
In Proceedings of Software Engineering Concepts and
Techniques. J. M. Buxton, P. Naur, and B. Randell, eds. Pp.
138–155. Garmisch, Germany: NATO Science Committee.
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato19
68.PDF.

Mili, Ali, Rym Mili, and Roland T Mittermeir 1998 A
Survey of Software Reuse Libraries. Annals of Software
Engineering 5: 349–414.

Mili, Hafedh 2002 Reuse Based Software Engineering:
Techniques, Organization and Measurement. New York:
Wiley.

Morisio, M., M. Ezran, and C. Tully 2002 Success and
Failure Factors in Software Reuse. IEEE Transactions on
Software Engineering 28(4): 340–357.

Nonaka, Ikujiro, and Hirotaka Takeuchi 1995 The
Knowledge-Creating Company: How Japanese Companies
Create the Dynamics of Innovation. New York: Oxford
University Press.

Otter, Martin, Torsten Blochwitz, and Martin Arnold 2013
Functional Mock-up Interface for Model Exchange and Co-
Simulation: 1–120.

Rajkumar, Ragunathan Raj, Insup Lee, Lui Sha, and John
Stankovic
 2010 Cyber-Physical Systems: The next Computing
Revolution. In Proceedings of the 47th Design Automation
Conference Pp. 731–736. ACM.

Ryman, Arthur G., Arnaud Le Hors, and Steve Speicher 2013
OSLC Resource Shape: A Language for Defining
Constraints on Linked Data. In LDOW.

Samlaus, Roland, and Peter Fritzson 2015 Semantic
Validation of Physical Models Using Role Models.
Simulation 91(4): 383–399.

Schamai, Wladimir, Peter Fritzson, and Christiaan J. J.
Paredis 2013 Translation of UML State Machines to
Modelica: Handling Semantic Issues. Simulation 89(4):
498–512.

Smolárová, Mária, and Pavol Návrat 1997 Software
Reuse: Principles, Patterns, Prospects. CIT. Journal of
Computing and Information Technology 5(1): 33–49.

The Reuse Company Inc. 2014 knowlegeMANAGER
(KM). Industry website. knowledgeMANAGER.
http://www.reusecompany.com/knowledgemanager,
accessed October 15, 2014.

Thüm, Thomas, Sven Apel, Christian Kästner, Ina Schaefer,
and Gunter Saake 2014 A Classification and Survey of
Analysis Strategies for Software Product Lines. ACM
Computing Surveys 47(1): 1–45.

Tracz, Will 1995 Confessions of a Used Program Salesman:
Institutionalizing Software Reuse. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc.

Valášek, M, P Steinbauer, J Kolář, and J Dvořák 2003
Concurrent Design of Railway Vehicles by Simulation
Model Reuse 43(6): 9–15.

Wellstead, Peter E 1979 Introduction to Physical System
Modelling. London: Academic Press.

Winsberg, Eric 2001 Simulations, Models, and
Theories: Complex Physical Systems and Their
Representations. Philosophy of Science 68(S1): S442.

Session 10C: Modelica Tools

DOI
10.3384/ecp15118747

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

757

