
Visualizing Simulation Results from Modelica Fluid Models

Using Graph Drawing in Python

Marcus Fuchs Rita Streblow Dirk Müller

RWTH Aachen University, E.ON Energy Research Center, Institute for Energy Efficient Buildings and Indoor

Climate, Aachen, Germany, mfuchs@eonerc.rwth-aachen.de

Abstract

Models of large thermo-fluid networks can be useful to

better understand the dynamic behavior of complex sys-

tems. Yet, numerical outputs and line plots of individual

variables may not be sufficient ways of processing the

simulation results for the user. Thus, the aim of this pa-

per is to present a visualization approach by means of

graph drawing. To demonstrate the approach, we use an

example from the Modelica Standard Library and the use

case of a district heating system model. We parse the

Modelica model code to generate a System graph that

represents the model structure and its graphical layout.

The graph drawing subsequently visualizes the results

for every time-step. In the examples, we vary line thick-

ness to visualize mass flow rates between two nodes and

line color to show temperatures of the medium. We ar-

gue, that this approach can be a useful tool for modeling

and analysis.

Keywords: Visualization, Graph Drawing, Modelica

Fluid, District Energy System

1 Introduction

One reason for using the Modelica modeling language is

the high re-usability of component models from model

libraries. In this context, the acausal connections be-

tween component models can be used to efficiently as-

semble larger system models (Dizqah et al., 2015). For

thermo-fluid systems, the Modelica.Fluid (Casella

et al., 2006) package includes the concept of stream con-

nectors, which facilitates the modeling of flow networks

with possible flow-reversals. In energy systems mod-

eling, e.g. for building or district heating systems, this

enables the assembly of large system models from only

a limited number of component models like pumps and

pipes.

When connecting multiple Modelica.Fluid com-

ponent models in a pipe network, the fluid flow is driven

by pressure differences between connectors. Often, mod-

els provide a relationship between mass flow rate and the

pressure drop between the component’s ports. This leads

to a network of mass flows between different pressure

levels. In many cases, another key aspect of modeling

are the thermal properties of the fluid flow and parts of

the components. A system model containing information

about all these aspects can be very useful to understand

the system’s dynamic behavior. Yet, with increasing sys-

tem size this amount of data increases at a rate that can

make it hard to comprehend and verify simulation re-

sults. In these cases, numerical outputs and line plots of

individual variables may not be sufficient ways of pro-

cessing simulation results for the user. Thus, the aim of

this paper is to present an approach to visualize the infor-

mation from thermo-fluid system simulations by means

of graph drawing and animation.

The need for additional visualization approaches

when dealing with complex Modelica system models

and its advantages for the user’s understanding has been

highlighted before. Previous work on this topic has

mainly focused on 3D visualization. To this end, Höger

et al. (2012) present an approach called Modelica3D,

in which Modelica code is used to communicate with 3D

rendering tools. They show the applicability of this ap-

proach for multi-body systems as well as in a building

energy system context, with a focus on the 3D visual-

ization of each component. In addition, Hellerer et al.

(2014) give a wide range of examples for their DLR

Visualization Library with a focus on multi-

body simulations. Both these papers also give a similar

overview of other previous work on this topic. Further-

more, simulation environments like Dymola offer func-

tionalities for plotting and animations of 3D objects, also

with a focus on multi-body animations.

In addition to the focus on multi-body and 3D visu-

alization, the field of thermo-fluid modeling has also in

part relied on post-processing simulation results using

the programming language Python. As a result, there

are several Python packages with different functional-

ities available. One such package is BuildingsPy

(LBL-SRG, 2015), which among other functionalities

contains methods for managing simulations, unit testing

model libraries, and processing result files. The package

awesim (De Conick, 2015) is a tool that helps to man-

age a variety of simulations and result files and so is use-

DOI
10.3384/ecp15118737

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

737



ful for multiple simulations and parameter studies. In ad-

dition, the package ModelicaRes (Davies, 2015) pro-

vides a user-friendly approach to process and plot simu-

lation results. There are thus various approaches to read

and work with Modelica simulation results in Python.

When considering the processing of simulation re-

sults for thermo-fluid networks, a promising method to

represent the model structure is in graph format. In a

non-Modelica context, e.g. Fang and Lahdelma (2014)

use a graph notation to describe a district heating net-

work with pipe elements as edges connecting the net-

work nodes. One useful approach to use such graph nota-

tion in Python is to use the package networkXHagberg

et al. (2008). networkX is a free package providing

data structures and algorithms for different graph types

and work involving different kinds of complex networks.

Furthermore, its open design allows for a wide variety of

data to be represented by nodes and edges. Together with

the powerful plotting package matplotlib (Hunter,

2007), networkX can be used to visualize graphs in

many ways.

Building on the previous work done by the Python de-

velopers mentioned above, we set out to present an ap-

proach for visualizing the dynamic behavior of complex

thermo-fluid networks modeled in Modelica by means of

a Python post-processing.

2 Process Overview

The approach presented in this paper aims at producing

a visual output, helping to better comprehend and ana-

lyze the data produced by simulating complex thermo-

fluid networks in Modelica. To this end, we use a post-

processing routine in Python. Python was chosen as a

programming language, in part because of its accessibil-

ity through easy syntax, wide use, and being platform-

independent. Another advantage of using Python is the

possibility to build on the previous work done in post-

processing Modelica results as described in section 1.

Fig. 1 shows a schematic representation of the ap-

proach presented in this paper. The information con-

tained in a Modelica model is used to initialize a Model

graph object. As it is often helpful to make abstrac-

tions from the original model design for visualiza-

tion, this Model graph is transformed to a System

graph in a subsequent step. After reading the Mod-

elica model’s simulation results to the System graph,

this class can generate a visual output in the form of

static plots and video animations. Both the python

classes for the Model and the System extend the class

nx.Graph from networkX, so that it inherently has

all of networkX’s well established functionalities for

graph handling and analysis. In order to read the Model-

ica result files and process the data, the code uses the

ModelicaRes package. This way, the Model and

System classes can be focused on performing the vi-

Figure 1. Flow chart for creation of visual output from Mod-

elica model

sualization without the overhead of reproducing graph

and result handling functionalities already available else-

where.

Reading information from a Modelica model to the

Model class in Python marks the start for the described

process. This information is represented in the graph by

placing edges between the nodes. In order to arrive at a

more intuitive display of the model structure, especially

for complex pipe networks, the Model graph is trans-

formed to a System graph. One major change in that

transformation is the introduction of network nodes be-

tween sub-models. In a further step, pipe models are

transformed from individual nodes to edges connecting

the network nodes. With pipes serving as connecting el-

ements in real-world systems, this representation may be

more user-friendly for the following visualization. The

process is described in more detail in section 3.

As a second input to the visualization process, the

System class uses methods from ModelicaRes to

read data from the result file into Python. This data can

be selected according to the purpose of the visualization.

Yet, for analyzing thermo-fluid systems, we will concen-

trate on the processing of mass flow rates, pressures, en-

thalpies, and temperatures. In order to handle this data

efficiently, networkX allows to attach almost any kind

of data and objects to individual nodes and edges. Thus,

each node and edge representing a model component can

hold its relevant information from the Modelica result

file. As the dynamic behavior of the system is of special

interest, each dataset contains the time-series of data for

every time-step of the simulation.

The data attached to nodes and edges can subse-

quently be used to visualize the overall system behavior

Visualizing Simulation Results from Modelica Fluid Models Using Graph Drawing in Python

738 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118737



by means of graph drawing. In addition to static graph

drawings showing the graph’s structure, the information

contained in the graph drawing can be extended by dif-

ferent means. For this demonstration, we will use the

line thickness and color of edge connections to represent

mass flow rates and temperatures for every simulation

time-step. In section 7 we will point to further possi-

bilities of enriching this data visualization approach in

future work.

After visualizing the system properties for every time-

step, we create a video from the individual plots, which

as a final outcome produces an accessible and intuitive

way to animate an amount of data for a complex sys-

tem that would be hard to process for a human user in a

standard 2D line plot. In the following sections, we will

present the individual steps outlined above in more detail

for an example model from the Modelica Standard Li-

brary. After that, we will present a use case of a campus-

scale district heating network to demonstrate the capabil-

ities of the visualization approach in an applied context.

3 Translation of Modelica Model to

Graph

As outlined above, the developed Model class

aims at a representation of the Modelica model

in a graph structure using Python. We will use

the model IncompressibleFluidNetwork

from the Modelica Standard Library’s

Modelica.Fluid.Examples package to illus-

trate the process description. The model’s diagram view

is shown in Fig. 2. This system consists of a piping

network with 11 pipes and 3 valves, transporting fluid

flows from a source on the figure’s left side to a sink on

the figure’s right side. For reasons of clarity, we will

limit the processing of this example to basic functions.

The full capability of the presented approach in its

current state will be shown in section 6 for the example

of a district heating network model.

For the first processing step, the Model class includes

methods to parse the Modelica code of a given file and

extract information from its declaration sections as well

as from the equation section. These functionalities are of

limited scope, however, as they focus only on mapping

the model structure into a graph in Python. More com-

plex Modelica features such as extending and redeclaring

are not processed by this simple parser. For the compo-

nent model declarations, the parser extracts data about

the component’s class, its instance name as well as the

coordinates of its graphical representation, which can be

read from the corresponding annotation. At the current

stage, this step will process only declarations of compo-

nents that have been selected in advance. This limitation

arises from the fact that later in the process, special sub-

classes are needed to extract relevant information from

the simulation results for each type of component.

Figure 2. Diagram view of the example model for an incom-

pressible fluid network from Modelica.Fluid

Figure 3. Representation of the example model in a Model

graph

In the example model, we prepared only for the fluid

components to be processed. As a result, sub-models

that are not an integral part of the fluid network, like the

system model in the lower right corner of Fig. 2 and

the control inputs for the valve openings are not taken

into account to be part of the Model graph. If of spe-

cial interest, a processing of these sub-models could also

be implemented into the presented framework. Yet, for

larger fluid networks, this may compromise the clarity of

the visualization.

Having set all the graph’s nodes according to the rel-

evant model components, the parser returns to the Mod-

elica model file to extract the connection statements. For

each connection statement involving those component

instances that are represented as a node, an edge is added

to the graph accordingly. In order to conserve all rele-

vant graphical information from the Modelica code, the

parser also processes the annotations of the connection

statements. If a connection in the Modelica code is not

drawn directly between two ports as a straight line, the

intermediate points given in the annotations are inserted

to the graph as separate network nodes. As a result, the

graphical representation of the graph will better match

the original Modelica model. For the example model

shown in Fig. 2, the Model graph is displayed in Fig.

3.

Before reading simulation data to the graph, we sug-

Session 10C: Modelica Tools

DOI
10.3384/ecp15118737

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

739



Figure 4. Representation of the example model in a System

graph. Network nodes are displayed in blue

gest converting the Model graph to a System graph.

This transformation can help to make the visualization

more intuitively comprehensible to the user. In this ex-

ample, we transform the Model graph in such a way

that the pipes are converted to be edges between network

nodes instead of nodes themselves. For this example, we

decided to keep the valves as nodes, thus showing both

possible pathways of keeping a component type as nodes

and converting nodes to edges for the pipes. This could

be changed according to the specific application with lit-

tle effort.

Fig. 4 shows the result of the conversion, with the net-

work nodes marked in a blue color and the pipes being

represented by edges. Even though the advantages of this

transformation may not be highly significant for this sim-

ple example, the use case in section 6 will demonstrate

the benefits in the context of a larger pipe network. Fur-

thermore, the distinction between Model and System

graphs allows for more dedicated class definitions with

focus on parsing the Modelica file for the Model class

and focus on visualization for the System class.

4 Reading Result Data to Graph

The System graph is created as a data structure and

template to visualize the dynamic system behavior. In

order to read the simulation result data into this struc-

ture, the System class can access top-level system data

directly by making use of result handling methods from

the package ModelicaRes. For handling result data

of the individual components, System calls special

Component classes. A basic Component class de-

fines methods for extracting certain data from the re-

sult file for a component in a general way. Exam-

ples for such methods are get_mass_flow_rate or

get_temperature, which return the time-series of

mass flow rate or temperature in the component respec-

tively.

As the identifiers for each component’s variables may

be different, we extend this general Component class

for every relevant component type and assign it its own

class with specific identifiers and in some cases with

special functionalities. In the example of 2, three such

classes are needed, i.e. the classes Boundary, Valve,

and Pipe. As extending the Component class requires

relatively little effort, we prefer this method over the at-

tempt to have only one Component class that tries to

manage all different component types and their differ-

ences.

In terms of processing the data, when adding a node to

the Model graph, a Component object is automatically

initialized and attached to the respective node. To this

end, networkX allows for setting data and objects as at-

tributes to nodes, edges, or the graph itself. In the imple-

mented approach, each object that is attributed to a com-

ponent’s graph representation is also moving from the

Model into the System graph. As a result, all data re-

garding the component can be accessed by user-friendly

methods like the get_mass_flow_rate mentioned

above for each node and edge. Thus, the object-oriented

approach from the Modelica model is followed also in

the post-processing by an object-oriented Python imple-

mentation.

For components that do not correspond to any Model-

ica component directly, in some cases the code will as-

sign the object of a neighboring graph element. For ex-

ample a network node may thus be attributed an instance

of the neighboring pipe object, so that it will return the

pipe’s mass flow rate when queried for such data. In

some cases, like for an edge between two network nodes,

there may also not be a neighboring object that directly

represents a Modelica model component. For this situa-

tion, we sometimes prefer not to attach any data to it in

order to not give any wrong impression in the visualiza-

tion. Yet, there is the possibility to interpolate some of

this data when the user wants it visualized in a certain

way.

When thinking about ways to visualize different kinds

of data for various components, some ways of display

seem more intuitive than others. As mentioned above,

some of the most relevant data to visualize for a thermo-

fluid network are mass flow rates, pressures, enthalpies,

and temperatures. Often, mass flow rates and temper-

atures are of special interest. In a non-Modelica con-

text, Köcher (2000) reported a way of visualizing pres-

sures and temperatures in a district heating network at the

nodes. Yet, in the System class representation shown in

Fig. 4, most of the mentioned information concerns the

edges rather than the nodes. Thus, the way the edges

are drawn in a graph plot are a central part of the visu-

alization. In order to prepare that visualization, we use

selected data to calculate edge weights and edge colors

to be used in the plotting.

The selection of what values to represent by edge

weights and colors is up to the user. The System

class contains methods for both calculations, that take

as arguments the variable that is to be represented, e.g.

temperature or mass flow rate. Based on this

selection, the edge weight and color will be calculated

and attributed to the corresponding edge. In the case of

color representation, a relative value between the mini-

Visualizing Simulation Results from Modelica Fluid Models Using Graph Drawing in Python

740 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118737



Figure 5. Schematic view of the visualization grid structure

mum and maximum value will be calculated and mapped

to a color coding using matplotlib’s color-mapping

function.

After the graph construction, transformation, and re-

sult file handling, the System graph will contain all rel-

evant data for visualization. This data structure concept

has proven to be user-friendly and efficient, making all

data easily accessible and fast to process. The System

representation as described above presents a compromise

between the most intuitive design and strictly follow-

ing the Modelica model setup. This compromise may

be evaluated for each use case and the graph representa-

tion adjusted accordingly. This is possible with moder-

ate manual effort, as the object-oriented and graph-based

code structure should be reasonably transparent for the

user.

5 Visualization of Fluid Flows

In order to keep the visualization output as flexible as

possible, we define a framework for sub-plots using

matplotlib’s grid structure. Fig. 5 illustrates the con-

cept. The only fixed properties are the spaces A and B

that serve as placeholders for the network graph drawing

and the corresponding color map. In many cases, one

can argue that such a graph drawing has advantages over

a multitude of standard 2D line plots. Yet, we do not

want to argue that it is inherently always superior to the

clarity and simplicity of a line plot. Therefore, any num-

ber of line plots can be placed beneath the graph drawing

in any number of spaces C, D, and so on. The System

class allows the user to name the variables that should be

plotted in addition to the graph drawing.

Regarding the graph drawing for space A in Fig. 5, the

user can select different visualization types. Most times,

this will consist of a 2D view recreating the System

graph as illustrated in Fig. 4, with the edge weights

and colors varying according to the preselected variables.

For the future, we will also work on 3D plots, where

the value of an additional variable can be visualized by

use of a z-axis. This is especially interesting to visu-

alize pressure levels so that mass flows will flow from

nodes plotted at greater z-axis levels to those with lesser

z-values.

In any case, the Python routine will create a plot fol-

lowing the structure shown in Fig. 5 for every time-step

in the simulation result file or for a user-selected period

within the simulation time limits. The graph drawing

will loop over all nodes and edges, plotting them into

space A and adjusting their appearance according to data

like the node type, edge weight, and edge color stored in

the networkX graph data structure. For the line plots,

the lines will be drawn from the time-step at the begin-

ning of the visualization until the current time-step for

this plot. Thus, when the individual static plots are com-

piled into a video, this will give the impression of a line

plot tracking the behavior of the corresponding variable

with each time-step.

Returning to the illustrative example introduced with

Fig. 2, we can demonstrate the graph drawing part of

the visualization output. Unfortunately, as the presented

approach directly aims at overcoming the limits of static

data plotting, it is hardly possible to show the benefits

of an animated visualization in the form of this paper.

Therefore, we attempt to mitigate this shortcoming in the

paper by using the timeline representation given in Fig.

6. In order to avoid distractions, we limited the display

to the plain graph drawing for four steps during the sim-

ulation time of 200 s.

There are three changes happening during simulation,

namely the closing of valve 1 after t = 50 s, the partial

closing of valve 2 at t= 100 s and the partial closing of

valve 3 after t = 150 s. The graph drawings show how

these changes affect system behavior. After the closing

of valve 1, the upper pipe branch is cut off from the flow

between the source at left and the sink at right. The par-

tial closing of valves 2 and 3 shows the effect of a re-

duced mass flow rate in the whole system, depicted by a

thinner line thickness for all connections.

In order to better demonstrate the functionalities of the

color mapping, we made one slight change to the original

model from Modelica.Fluid. In the original model,

the temperature at the source is kept constant, and the

heat source in pipe 8 only has a limited effect on the

system as a whole. Therefore, we changed the source

temperature to start at 80 ◦C and decrease linearly until

the end of the simulation to 20 ◦C. This decreasing tem-

perature can be seen in Fig. 6, represented by the chang-

ing edge colors. In calculating the edge colors, we used

temperature values derived from the average enthalpy be-

tween the two fluid ports of a component.

For animating the individual plots in a video, we

use the lightweight and freeware software Images to

Video (Sivic, 2015). This software can be called via

a command line interface with all settings saved in an

XML file. As these steps can be executed from within

the Python environment, the solution requires no effort

Session 10C: Modelica Tools

DOI
10.3384/ecp15118737

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

741



Figure 7. Diagram view of the district heating network model

from the user. Also, the user is free to work directly with

the individual plots created or use different software to

create a video. Still, this part could be improved upon

if a Python package for creating the video could be used

instead for a more integrated process.

6 Use Case: District Heating Net-

work

In the previous sections, we used a rather academic ex-

ample to demonstrate the process and functionalities of

the presented approach. In this section, we show a use

case for which the presented visualization tools were

originally developed. We investigate a district heating

network that supplies about 120 buildings with heat from

one central heating plant. To model this system, we use

simplified component models for pipes, the building sub-

stations, and the supply. The graphical representation of

the system model is shown in Fig. 7. The pipe models

calculate a pressure drop depending on the mass flow rate

and have a thermal connection to the ground temperature

to calculate thermal losses. The building substation mod-

els include a control valve, adjusting the mass flow rate

according to building heat demand given as a table in-

put. The supply model consists of a simple pump model

and an ideal heat source, controlling the network’s sup-

ply temperature to a set temperature depending on the

outdoor air temperature.

Considering the about 120 buildings, over 200 pipe

elements in the supply and return lines, and the loops

Figure 8. The district heating network’s System graph

in both, the district heating network qualifies as a com-

plex thermo-fluid system. Using only 2D line plots to

visualize mass flow rates and temperatures for the en-

tire system can thus be cumbersome. In this context, the

presented visualization approach can help to verify and

better understand the system behavior of the model.

For the system model, there are two largely identi-

cal pipe networks, one for the supply lines from sup-

ply plant to the buildings and one for the return lines

from buildings to the supply plant. We modeled both

these networks, but only used graphical annotations for

the Modelica code of the supply lines. Therefore, the

return pipes and their connections are not shown in the

diagram view of the Modelica model. This leads to a

clearer model view, yet makes it even more important to

verify the model results in order to ensure that all these

connections are correct.

As the Model class processes the Modelica code in

terms of declaration statements, connections, and their

graphical annotations, the missing graphical annotations

lead to the return components neither being represented

in the Model nor in the System graph. The resulting

System graph for the district heating network is shown

in Fig. 8. Nevertheless, the values of the return pipes can

be shown in the graph in place of the supply pipes’ val-

ues, as the return lines are placed at the same locations

as the supply lines. For the data handling of each com-

ponent, we extend the general Component class and

Figure 6. Using graph drawing to visualize system behavior over time

Visualizing Simulation Results from Modelica Fluid Models Using Graph Drawing in Python

742 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118737



Figure 9. Visualization output for the district heating network

at a low-load operation at the beginning of the simulation

define the identifiers for different variables in the result

file as described in section 3. Thus, it is possible to use

a Pipe component class that retrieves the supply or the

return pipes’ data at the user’s selection. Similarly, we

use a Supply and a Building class to handle the data

of these components.

To demonstrate the visualization approach for this use

case, we use a simulation of the district heating network

model for a simulation time of 2500 hours with an hourly

time-step. Starting at the beginning of the year, this illus-

trates the first part of the year with significant heat loads.

Following the layout of Fig. 5, we use the graph drawing

to visualize mass flow rates and the temperatures in the

supply lines as well as two line plots. One line plot shows

the supply plant’s supply and return temperatures and the

second line plot shows the ambient outdoor temperature

as read from the weather input file.

Again, this paper is limited to show static plots of the

visualization for given time-steps. A further application

is to compile a video from all the plots to animate the

dynamic system behavior. For this demonstration, Fig.

9 shows the state of the system near the beginning of

the simulation while Fig. 10 shows the system closer

to the end of the simulation. By varying the line width

of the pipe connections according to pre-calculated edge

weights that depend on the mass flow rate, it is possible

to show the mass flow rates for all of the supply lines’

over 100 pipe elements in one single plot. Together with

the color mapping of water temperatures within the pipe

to the color bar given on the upper right, the plots give

an impression of the energy flows in the network.

A comparison of Fig. 9 and Fig. 10 illustrates the

concept of line plotting in the lower part of the figures.

As the line is plotted from the beginning until the cur-

rent time-step, it gives an impression of monitoring the

Figure 10. Visualization output for the district heating network

at a medium-load operation near the end of the simulation

selected simulation results when animated into a video.

Furthermore, it serves as an indicator of the current time-

step even in a static plot and enables the plotting of data

that would be difficult to represent by color and line

thickness or variables that are not directly part of the

thermo-fluid network like the ambient temperature. This

enriches the context for the graph drawing visualizing

the energy flows in the network.

By visualizing energy flows in the graph drawing,

the presented approach can be a useful tool in verifying

simulation results. For verification purposes, the main

advantage of the graph-drawing based visualization ap-

proach over simple line plots is that various system vari-

ables are shown together and in context of the system

behavior. Furthermore, it would be possible to not only

display simulation result variables in such a visualiza-

tion, but to also display deviations from measurement

data, if such data is available.

Once verified, the visualization can also be used as a

tool to better understand system behavior and thus as-

sist in planning of the system operation. In real-world

thermo-fluid networks, the exact ways the energy flows

take is often not known. Especially in district heating

networks that include multiple loops and where the pipes

are buried in the ground, it can be hard to measure the

direction and flow rates of all the pipes. In these cases,

as Fig. 10 indicates, the visualization can help to identify

main routes of energy flows as well as pipe elements with

low flow rates. Yet, to draw conclusions for the operation

of the actual system, efforts must be made to verify such

observations in the real-world system, as model assump-

tions and malfuntions in the actual system can lead to

deviations between simulation and real-world operation.

Session 10C: Modelica Tools

DOI
10.3384/ecp15118737

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

743



7 Conclusions

This paper presents an approach that uses post-

processing of Modelica simulation results and graph

drawing in order to better visualize the dynamic behav-

ior of complex thermo-fluid networks than standard line

plots of individual result variables. Using a graph and at-

tributes for nodes and edges as a data-structure to handle

Modelica simulation results has proven a feasible con-

cept, as it can mirror the object-oriented structure of the

Modelica model into the post-processing. This allows

for a low-maintenance framework that nevertheless of-

fers flexibility for adjustments and options to tailor the

visualization output to the specific aims of the visualiza-

tion and to the requirements of the used models.

Regarding the computational performance, processing

the data as well as the Model and System graphs cre-

ates little overhead and takes a few seconds on a standard

laptop computer. The time for the plotting will largely

depend on the model size, time-step, simulation time,

and the required resolution of the output data. There-

fore, this part of the process can currently take from a

few minutes up to 2 hours for a very high-resolution ani-

mation of a large district heating system simulation with

small time-steps and a duration of 1 year. Yet, it is likely

that the time this part of the process can be efficiently

reduced by parallelization of the plotting.

The functionality of the presented approach was

demonstrated for a simple example from the Modelica

Standard Library as well as for a real-world application

of a district heating system model. In this proof of con-

cept, we used line thickness to visualize mass flow rates

from one node to another and line colors to indicate tem-

perature levels. Other possible uses include visualiz-

ing pipe diameters with line thickness or flow velocities

with line colors. Also, we limited our graph drawing to

2-dimensional representations of the system, which re-

sembles the diagram view of the corresponding Model-

ica models. In this process, parsing the Modelica code

for the graphical information in the annotations leads to

nodes in the graph with corresponding coordinates. In

future work, it will be interesting to visualize certain

values in a pseudo-3-dimensional way, where the model

representation can stay in the x- and y-axes while sim-

ulation result values can be shown on a corresponding

z-axis. This is especially promising to visualize pres-

sure levels of supply and return lines for thermo-fluid

networks or deviations between simulation results and

measurement data.

We argue that the presented approach can be a use-

ful tool in handling the complexity of larger thermo-fluid

networks and their dynamic system behavior. On the one

hand, the visualization of energy flows and other simu-

lation result data can help modelers to verify their model

setups and assumptions. On the other hand, the visu-

alization can be used to inform about relationships and

interactions of system components. Yet, drawing con-

clusions from such visualization for the operation and

design of actual systems, similar to all aspects of mod-

eling and simulation, requires critical verification of the

models used and the results obtained.

Furthermore, the process of visualizing Modelica sim-

ulation results introduces methods to parse Modelica

code and handle information about model structure and

behavior in a Python-based graph structure. For the

future, it will be interesting to use these resources for

the automated generation and modification of Modelica

models. To this end, we are working on a bi-directional

work-flow to generate Modelica models for district en-

ergy systems from different input data with the System

graph at the conceptional core. Possible input data in-

cludes data from geographic information systems (GIS)

or CityGML. In reverse, these models and their results

can again be processed by the System graph as de-

scribed in this paper. Thus, the System graph can be

used as the foundation in an integrated workflow for

model generation as well as result analysis and visual-

ization. We think that such an approach has the poten-

tial to address handling the complexity of input and out-

put data of large-scale energy system models, which has

been identified as one of the key challenges in modeling

such systems (Keirstead et al., 2012).

This will hopefully reduce manual effort in modeling

complex system like district energy systems and lead to

insights from modeling these systems for real-world ap-

plications. To this end, we plan to release the developed

Python code as an open-source package in the near fu-

ture. In addition, the Modelica component models for

the district heating network modeling will be made avail-

able through the open source model libraries AixLib1

and its contributions to the Annex 60 library2, which is

a joint effort within the International Energy Agency’s

Annex 60 programme.

Acknowledgment

We gratefully acknowledge the financial support by

BMWi (German Federal Ministry of Economic Affairs

and Energy), promotional reference 03ET1260A.

References

Francesco Casella, Martin Otter, Katrin Proelss, Christoph

Richter, and Hubertus Tummescheit. The Modelica Fluid

and Media library for modeling of incompressible and com-

pressible thermo-fluid pipe networks. In Modelica Associ-

ation, editor, Proceedings of the 5th International Modelica

Conference, pages 631–640, 2006.

Kevin Davies. ModelicaRes python package, 2015. URL

http://kdavies4.github.io/ModelicaRes/.

1httpd://github.com/RWTH-EBC/AixLib
2https://github.com/iea-annex60/modelica-annex60

Visualizing Simulation Results from Modelica Fluid Models Using Graph Drawing in Python

744 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118737



Roel De Conick. awesim python package, 2015. URL

https://github.com/saroele/awesim.

Arash M. Dizqah, Alireza Maheri, Krishna Busawon, and Pe-

ter Fritzson. Standalone DC microgrids as complementar-

ity dynamical systems: Modeling and applications. Control

Engineering Practice, 35:102–112, 2015. ISSN 09670661.

doi:10.1016/j.conengprac.2014.10.006.

Tingting Fang and Risto Lahdelma. State estimation of dis-

trict heating network based on customer measurements. Ap-

plied Thermal Engineering, 73(1):1211–1221, 2014. ISSN

13594311. doi:10.1016/j.applthermaleng.2014.09.003.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Explor-

ing network structure, dynamics, and function using Net-

workX. In Proceedings of the 7th Python in Science Con-

ference (SciPy2008), pages 11–15, Pasadena, CA USA, Au-

gust 2008.

Matthias Hellerer, Tobias Bellmann, and Florian Schlegel. The

DLR Visualization Library - recent development and appli-

cations. In the 10th International Modelica Conference,

March 10-12, 2014, Lund, Sweden, Linköping Electronic

Conference Proceedings, pages 899–911. Linköping Uni-

versity Electronic Press, 2014. doi:10.3384/ECP14096899.

Christoph Höger, Alexandra Mehlhase, Christoph Nytsch-

Geussen, Karsten Isakovic, and Rick Kubiak. Model-

ica3D - platform independent simulation visualization. In

Modelica Association, editor, Proceedings of the 9th In-

ternational Modelica Conference, pages 485–494, 2012.

doi:10.3384/ecp12076485.

John D. Hunter. Matplotlib: A 2D graphics environment.

Computing In Science & Engineering, 9(3):90–95, May-Jun

2007.

James Keirstead, Mark Jennings, and Aruna Sivaku-

mar. A review of urban energy system models: Ap-

proaches, challenges and opportunities. Renewable

and Sustainable Energy Reviews, 16(6):3847–3866, 2012.

doi:10.1016/j.rser.2012.02.047.

Ralf Köcher. Beitrag zur Berechnung und Auslegung von

Fernwärmenetzen. PhD thesis, Technische Universität

Berlin, Berlin, 2000. URL http://d-nb.info/

960177469/34.

LBL-SRG. BuildingsPy python package, 2015. URL https:

//github.com/lbl-srg/BuildingsPy.

Jaromir Sivic. Images to video v4.0, 2015. URL http://

en.cze.cz/Images-to-video.

Session 10C: Modelica Tools

DOI
10.3384/ecp15118737

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

745


