
Optimica Testing Toolkit: a Tool-Agnostic Testing Framework for

Modelica Models

Anders Tilly1 Victor Johnsson1 Jon Sten2 Alexander Perlman2 Johan Åkesson2

1Lund University, Sweden, {ada09ati,ada10vjo}@student.lu.se
2Modelon AB, Sweden, {jon.sten,alexander.perlman,johan.akesson}@modelon.com

Abstract

The need for regression testing increases as the size and
complexity of software projects grow. The same is true
for Modelica libraries and Modelica tools. Large Mod-
elica projects often involves several Modelica tools and
libraries which are under development. In those situa-
tions, with several orthogonal code bases, the need for
systematic regression testing is needed.

In this paper we investigate a new way to create and
run tests by developing a tool-agnostic testing frame-
work. Additionally a graphical user interface for test au-
thoring and management was created.

Keywords: Cross Testing, Testing Framework, Test

Authoring, Regression Testing, User Interface, Modelica,

FMI

1 Introduction

Optimica Testing Toolkit (OTT) is a tool-independent
framework for performing automatic testing on Model-
ica models. It supports both static and script-based test-
ing. Static testing is used to perform predefined tests on a
subset of models in a library, where the user provides the
specific library as well as a criteria for selecting which
models to test. Each model is automatically compiled
and simulated and the resulting trajectories are compared
to reference trajectories. Script-based testing enables the
test author to write finely tuned tests that interact with
the compilation and simulation process and to test indi-
vidual models with specific compiler and simulator sce-
narios. OTT supports cross-tool testing with several dif-
ferent Modelica compilers and simulation environments
using FMI.

The purpose of OTT is not only to provide a frame-
work for testing Modelica models, but also to provide
a testing pipeline that is tool agnostic. OTT provides
the same testing pipeline regardless of what compiler
and simulator performs the actual model compilation and
simulation. Tool agnosticism is provided by means of an
abstraction layer between OTT and the actual tools. Each
tool is hooked into the abstraction layer via a plugin tai-

lored specifically to that tool.
As part of the development cycle a Graphical User In-

terface (GUI) was developed (Tilly and Johnsson, 2015).
The GUI can be used for test authoring, test configura-
tion and test execution. One important aspect considered
during development was to ensure that the GUI had good
usability. We used a number of different user studies to-
gether with the users in order to discover usability prob-
lems, and then used iterative development to address and
fix those issues.

OTT was initialy developed by Modelon as an in-
house tool for performing library testing and verification
using several Modelica tools. It has since been extended
with the GUI and other features and is now provided and
maintained as a commercial product by Modelon 1.

2 Background

In software development, a test is usually run and
checked towards an expected result (Burnstein, 2004).
Testing Modelica models are tested using the same con-
cept. More specifically, testing a Modelica model means
testing if it: (a) can be translated and simulated without
error, (b) delivers the expected results, and (c) represents
reality adequately (Samlaus et al., 2014). For aspect b,
there are reference values that are considered to be the
“correct” values. The result of a test is checked to be
within a specific tolerance of that value. If the modeler
deems the new value to be better than the reference value,
the modeler may choose to overwrite the old reference
value and use the new value as future reference.

Testing consists of test authoring, test configuration
and test execution. Authoring a test for a model means
to select some variables to compare against references,
and also changing some parameters in the model. Test
configuration refers to choosing the appropriate settings
for the test, such as which compiler to use, and test exe-
cution refers to running the tests.

In Modelica, models can be created and represented
both textually and graphically. Using a graphical user in-
terface is sometimes more efficient than using a program-

1http://www.modelon.com/

DOI
10.3384/ecp15118687

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

687



model SimpleDeclaration

extends Icons.TestCase;

Real x = 3;

Real y = x;

annotation(

__ModelicaAssociation(TestCase(

shouldPass=true)),

experiment(StopTime=0.01),

Documentation(

info="<html>Tests simple component

declarations.</html>"));

end SimpleDeclaration;

Listing 1. An example of TestCase
and experiment annotations. This example is taken from the
Modelica Compliance Library Guide (Open Source Modelica
Consortium, 2013).

matic approach (Chen and Zhang, 2007). Test authoring
on the other hand is usually done programmatically.

The Modelica language contains the concept of an-
notations for storing meta information about the model.
Examples of such information are: graphics, documenta-
tion and versioning (Modelica Association, 2014). There
are two types of annotations that are relevant for testing:

• experiment: The experiment annotation indi-
cates that the model can be simulated and it also
provides simulation settings, such as start or stop
time (Modelica Association, 2014). See listing 1 to
see an example of this annotation.

• TestCase: The TestCase annotation extends the
experiment annotations and specifies additional in-
formation, such as whether the test should pass
or fail (Open Source Modelica Consortium, 2013).
See listing 1 to see an example of this annotation.

2.1 Testing Frameworks

The testing process in software development is either au-
tomated or manual. Constructing an automated test is
often more expensive than performing a single manual
test. However, once the automated test has been speci-
fied, running it is much more efficient than performing
the test manually. Because of this, automated testing
is well suited for regression testing. Regression testing
means performing tests continuously throughout the de-
velopment process. This is done to discover possible in-
troduced errors when making changes in the software.
Manual testing on the other hand is done by a human.
Manual testing is often required for GUI applications
where how things look and feel is of interest. Performing
automated tests for this purpose can be difficult.

Automated tests can be built and run using testing
frameworks. A testing framework provides a way for
specifying and executing tests. Some examples of estab-
lished testing frameworks are:

• JUnit, a testing framework for the Java program-
ming language (Gamma and Beck, 1999).

• Nose, a testing framework for the Python program-
ming language (Arbuckle, 2010).

2.2 Usability

When we talk about usability in this paper, we mean the
usability of software. Usability can be viewed as includ-
ing a wide range of quality factors, for example main-
tainability. However, this paper focuses on the aspects
of daily operation as defined by Soren Lauesen (2005).
Lauesen defines usability to consist of six usability fac-
tors:

• Fit for use: Does the software have the needed func-
tionality?

• Ease of learning: Is it easy to learn?

• Task efficiency: Is it efficient for the frequent user?

• Ease of remembering: How easy is it to remember
for the occasional user?

• Subjective satisfaction: Does the user feel satisfied
when using the software?

• Understandability: Does the user understand what
happens in the software?

2.3 Related Work

Testing and automatic testing is nothing new to Mod-
elica and FMI. Two examples of such implementa-
tions are: UnitTesting (Tiller and Kittirungsi, 2006) and
MoUnit (Samlaus et al., 2014).

UnitTesting is a Modelica based library targeted at
unit testing of Modelica models. Tests are created by
defining Modelica models which extends the UnitTesting
library. One big aspect of the testing library is to provide
a wide range of metrics for the tested models. Exam-
ple of supported metrics are component-, condition- and
static-coverage.

MoUnit is a framework for automatic Modelica model
testing. Tests are written in a language defined by
MoUnit. MoUnit is integrated into the Modelica IDE
OneModelica which supports the user during test au-
thoring and test execution. However MoUnit can also
be used standalone when integrated into automatic build
environments such as Jenkins and Hudson. MoUnit pro-
vides result reporting and comparison against reference
results.

The solution presented in this paper differs from these
implementations. It is tool-agnostic, plugin-based and
supports enhanced cross-testing. This enables library de-
velopers to verify their library with different Modelica
and FMI tools. Additionally it allows for cross-testing
between different compilation and simulation tools.

Optimica Testing Toolkit: a Tool-Agnostic Testing Framework for Modelica Models

688 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118687



3 Test Methodology and Require-

ments

3.1 Static

Static testing is primarily used to test a large set of mod-
els that share one or more properties, e.g. package con-
tainer, base class, annotation etc. A static test session
begins with a set of Modelica packages containing test
models as input, as seen in figure 1. The packages are
traversed and models with properties matching a given
set of criteria are selected. When a selection is made
the test cycle; translation, compilation, simulation and
verification begins. After verification is complete, infor-
mation collected during test execution is passed to a set
of output modules responsible for rendering the results,
this completes the test cycle. The test session terminates
when no more models are found.

Figure 1. OTT static test cycle

The following types of static tests are currently sup-
ported:

• Experiments, tests models containing the
experiment() annotation

• Test cases, tests models containing the
__ModelicaAssociation(TestCase())

annotation

A test session may be explicitly setup to run its test
cycles up to and including a certain operation and still be
considered completed (this is true of all static tests except
for the Test cases tests where a test may be specifically
designed to fail during one of the operations).

Due to the limitations of the experiment and test-
case annotations, a new test specification format is un-
der development. The format facilitates additional in-
put and output for the test, such as modifiers for param-
eters, reference variables, tool specific options and much
more. The current implementation of this test specifi-
cation stores most of the information in an Extensible
Markup Language (XML) file, but in some cases uses

other formats, such as tool-specific scripts and reference
results. This paper will not explore this specification for-
mat further due to its current state.

3.2 Scripted

Script-based testing is primarily used to perform fine-
grained and diversified testing of models which, unlike
the models used for static testing, share none or very few
properties. The OTT script-based testing pipeline gives
the user total control over the testing process.

Much like static testing, OTT automatically retrieves
relevant tests based on the sieve provided by the user.
But that is where the similarities to static testing ends. It
is the user defined test that is the driving factor during
execution of scripted tests. Instead, OTT provide conve-
nient and uniformed interfaces to the different Modelica
tools and result reports. This gives the user full control
of the test execution and less worry about tool specific
interfaces. Additionally OTT provides mechanisms for
populating and producing test reports.

Scripted tests are written in Python and resembles
tests written for the Nose testing framework. However,
unlike Nose, OTT provides interfaces to common Mod-
elica and FMI tools.

3.3 GUI

The basic workflow when using the GUI is as follows:
the modeller (a) creates a test for a specific model, (b)
selects variables and parameters to include in the test, (c)
runs the test and (d) examines the results.

When running a test in the GUI, the included variables
and parameters and their values are extracted from the
test and run using OTT. OTT then produces the results
in the form specified, and if the results contain a HTML
report, the report is displayed in the GUI.

The requirements for the GUI were that it should be
user-friendly and it should provide all the necessary fea-
tures. The workflow and features were discovered using
user studies with the users, see 4.2.1 for more about this.

4 Implementation

OTT is a plugin-based tool written in Python and Java. It
is able to interface to FMI and Modelica compliant tools
either through Python interfaces or sub-process calls.

4.1 OTT Core

OTT Core contains functionality for collecting and per-
forming static and scripted testing. It also contains ab-
straction layers for the different test steps, compilation,
simulation and verification.

Session 10A: Testing & Diagnostics

DOI
10.3384/ecp15118687

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

689



4.1.1 Overview

For static testing OTT uses the Optimica Compiler
Toolkit (OCT)2 to traverse Modelica libraries. During
the traversal the user configurable sieve is used to col-
lect tests by filtering the target library. Depending on the
user’s command OTT will then take the tests through the
different test steps. Each test step provides one or more
tool implementations. Current version of OTT supports
OCT and Dymola both for compilation and simulation.
Result verification is currently done using CSV Result
Compare tool (CSV compare) developed by ITI GmbH,
see figure 2.

Each test produces a test report containing information
collected during execution. The test report is in an inter-
mediate format which can be converted into any type of
presentation format. OTT has a presentation layer which,
like the tool abstraction layer, relies on plugins. OTT has
the following set of default output plugins:

• HTML, produces reports in human readable form,
see figure 3.

• JUnit, produces reports in machine readable form,
suitable for build servers.

• Pickle (Python), produces serialized Python test re-
port objects.

• Hash, produces a file mapping model names to
hashed filenames.

The main entry point to OTT is through the MRTT
command line program. It allows the user to specify a
wide range of settings, such as: target library, what tools
to use for the different steps, output type and tool specific
settings. An overview of the OTT Core can be found in
figure 4.

Scripted testing works in a similar fashion as static.
However, unlike static tests, scripted tests control the
execution flow. OTT only facilitates integration to sup-
ported Modelica and FMI tools. OTT also simplifies the
generation of various report artifacts by providing access
to the presentation layer. This allows the user to focus
on authoring tests instead of writing report files, such as
HTML and JUnit reports.

4.1.2 Jenkins Integration and JUnit

OTT can easily be integrated into common Continuous
Integration (CI) frameworks such as Jenkins and Hud-
son. This is done by configuring OTT to output a JUnit
test report. This report is then parsed by the CI frame-
work. The JUnit report contains status information for
the different test steps, each with its own pass/fail flag.
This enables the framework to detect changes in tests
that changes between two failing states, i.e. if a model
goes from compilation failure to simulation failure.

2http://www.modelon.com/

4.2 GUI

The OTT GUI allows the user to create, modify and ex-
ecute tests. It was developed with usability in mind to
ensure that it would be user-friendly.

4.2.1 User Feedback

We continuously evaluated the GUI by using the meth-
ods described by Lauesen (2005). Every iteration began
with an evaluation of the GUI in the form of a user study
followed by a response in the form of implementation in
the GUI. The features that were implemented often di-
rectly addressed some usability concern.

Here are some important usability concerns we ad-
dressed:

• How to find the names of variables and parameters
that will be included in the test.

• How to update the reference value of a test.

• How to view the results of the test.

• How to create many similar tests, and how to update
them.

4.2.2 Features

In the GUI, as seen in figure 5, variables and modifiers
(parameters) are displayed in tree views. Every tree view
has a filter to make it more flexible to navigate the view.

The GUI has support for test inheritance, primarily to
make it easier to create many similar tests. Test inheri-
tance means that a subtest can be created to an already
existing test. The subtest inherits all of the included vari-
ables and modifiers of the parent. The subtest can then
change the value of those modifiers and add additional
modifiers or variables. If the parent tests is updated all
subtests will be updated. For example, as seen in fig-
ure 5, test c is a subtest of test a. Test a includes the
modifiers driveAngle and inertia1.J. Test c in-
herits these two modifiers and also changes the value
of inertia1.J. Test c also includes its own modifier
inertia2.J.

After a test or suite of tests are run, the results will be
displayed in the GUI. Reference results can be updated
by pressing a button in the displayed results file. This
allows the modeler to overwrite the old reference value
if the new value is deemed more appropriate. When up-
dating the reference, all variables specified in the test are
updated.

Some basic features included in the GUI are: un-
do/redo operations, keyboard shortcuts and a run con-
figuration.

Optimica Testing Toolkit: a Tool-Agnostic Testing Framework for Modelica Models

690 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118687



Figure 2. One variable compared to the reference value in the result file.

Verification Report

Models Compilation

ime 

[s] Simulation Time [s]

atio

n

ime[

s] Rate
Modelica.Blocks.Examples.PID_Controller pass 4.46 pass 0.41 pass 1.91 100%

Modelica.Blocks.Examples.Filter pass 5.81 pass 0.92 fail n/a
Either the result file or the 

reference file does not exist

Modelica.Blocks.Examples.FilterWithDifferentiation pass 5.53 pass 0.48 pass 0.96 100%

Modelica.Blocks.Examples.FilterWithRiseTime pass 4.69 pass 0.36 pass 1.11 100%

Modelica.Blocks.Examples.InverseModel pass 3.29 pass 0.46 pass 0.72 100%

Modelica.Blocks.Examples.ShowLogicalSources pass 3.34 pass 0.27 pass 0.42 100%

Modelica.Blocks.Examples.LogicalNetwork1 pass 3.37 pass 0.35 pass 0.48 100%

Modelica.Blocks.Examples.RealNetwork1 pass 3.40 pass 0.41 pass 0.91 100%

Modelica.Blocks.Examples.IntegerNetwork1 pass 3.64 pass 0.41 pass 0.87 100%

Modelica.Blocks.Examples.BooleanNetwork1 pass 4.25 pass 0.40 pass 1.11 100%

Modelica.Blocks.Examples.Interaction1 pass 4.25 pass 0.41 pass 0.95 100%

Modelica.Blocks.Examples.BusUsage pass 3.32 pass 0.35 pass 0.57 100%

Summary

Modelica.Blocks

Passed compilation: 12/12 Passed simulation: 12/12 Passed verification: 11/12

Figure 3. The results from testing a package with OTT.

Session 10A: Testing & Diagnostics

DOI
10.3384/ecp15118687

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

691



Other

Pickle

JUnit

HTMLOutput

Implementation

Implementation

Implementation

Implementation

OCT

OTT Core

Verifier

Simulator

Compiler

Sieve

MRTT

Figure 4. Overview of OTT Core

5 Conclusion and Future Work

In this paper, we presented a solution for tool agnostic
regression testing in Modelica. By using a plugin like
structure we have shown that it is possible to achieve a
clear separation between the different testing steps. This
allows us to use one Modelica tool to compile the model
and another FMI tool to simulate the model, thus pro-
viding true cross-testing of Modelica libraries and tools.
We have also shown why both scripted and static test-
ing is necessary in Modelica development and how it
can be implemented in a testing framework. The plu-
gin structure also facilitates extendable and customiz-
able test reports. One demonstration of this extendability
was exemplified by showing the integration to automatic
build systems such as Jenkins/Hudson by creating a out-
put module that writes JUnit reports.

Additionally we present a GUI which enables the user
to do test authoring, test execution and viewing of test re-
sults. We show how the GUI can improve the efficiency
of test authoring by providing tools for efficient selection
of test variables and parameters in the test model. We
also show how the usability of the GUI was improved
using iterative user studies and development.

In the future we plan to extend the number of sup-
ported Modelica and FMI tools, which will further
strengthen the cross-testing capabilities. In order to im-
prove the usability of the GUI we plan to integrate a
graphical model viewer that has previously been imple-
mented (Sten, 2012). Likewise we plan to render model
icons correctly by integrating a previously developed
icon rendering framework (Olsson and Moraeus, 2011).

References

Daniel Arbuckle. Python Testing: Beginner’s Guide. Packt
Publishing Ltd, 2010.

Modelica Association. Modelica - a unified object-oriented
language for systems modeling, language specification ver-
sion 3.3 revision 1. page 31, 2014.

Ilene Burnstein. Practical Software Testing : A Process-

Oriented Approach. Springer, 2004.

Jung-Wei Chen and Jiajie Zhang. Comparing text-based and
graphic user interfaces for novice and expert users. In AMIA

Annual Symposium Proceedings, volume 2007, pages 125–
129. American Medical Informatics Association, 2007.

Open Source Modelica Consortium. Modelica Compliance Li-

brary Guide. 2013.

Erich Gamma and Kent Beck. Junit: A cook’s tour. Java Re-

port, 4(5):27–38, 1999.

ITI GmbH. Csv result compare tool. https://github.

com/modelica-tools/csv-compare. Accessed:
2015-05-19.

Soren Lauesen. User Interface Design - A Software Engineer-

ing Perspective. Addison-Wesley, 2005.

Kristina Olsson and Lennart Moraeus. Eclipse-based graphical
rendering and editing of modelica code. Bachelor’s Thesis,
Lund University, 2011.

Roland Samlaus, Mareike Strach, Claudio Hillmann, and Peter
Fritzson. MoUnit - A Framework for Automatic Modelica

Model Testing. Proceedings of the 10th International Mod-
elica Conference, 2014. doi:10.3384/ecp14096549.

Jon Sten. Graphical editing in jmodelica.org. Master’s thesis,
Lund University, 2012.

Michael M Tiller and Burit Kittirungsi. UnitTesting: A Library

for Modelica Unit Testing. 2006.

Anders Tilly and Victor Johnsson. Developing a test authoring
tool for a modeling language. Master’s thesis, Lund Univer-
sity, 2015.

Optimica Testing Toolkit: a Tool-Agnostic Testing Framework for Modelica Models

692 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118687



Figure 5. The OTT GUI

Session 10A: Testing & Diagnostics

DOI
10.3384/ecp15118687

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

693


