
Towards a Formalized Modelica Subset†

Lucas Satabin1 Jean-Louis Colaço1 Olivier Andrieu1 Bruno Pagano1

1Esterel Technologies/ANSYS SBU, France, firstname.lastname@ansys.com

Abstract

The ever growing requirement for safety in embedded

systems, together with the willingness of having a mod-

elling language to describe both the physics and the

software that controls it makes Modelica an interesting

candidate to design, simulate and implement complex

systems. Originally designed to address multi-physics,

since its version 3.3 Modelica integrates constructions to

describe discrete controllers. Now the question of using

Modelica to design critical embedded software arises.

In this paper we address the problem of defining a

practical Modelica subset that can be entirely formalized

and we sketch the formalization of this subset with the

concrete example of static name resolution. This work

should serve as a basis to define a suitable language that

can be used to both simulate systems and generate em-

bedded critical code.

Keywords: embedded systems, safety, code generation,

formalization, name resolution

1 Introduction

Designing a complete programming language is a heavy

task that involves many different aspects. The more fea-

tures it contains, the more interactions between them are

to be considered to ensure its correctness.

Modelica is an object-oriented language that was de-

signed to simulate multi-physics systems. It is quite rich

with a lot of constructs that are both static and dynamic.

To make it a useful language, having a consistent behav-

ior in its different implementations is a key point that can

only be reached if it has a well documented and non-

ambiguous semantics.

Moreover, the Modelica specification version 3.3 in-

troduced new synchronous features that make it usable

to design discrete controllers. It becomes tempting to use

these features of Modelica to both simulate the physics

with the controller and generate code for the controller,

so that the same model is used for both activities.

Embedding code into critical systems (such as air-

planes) requires some guarantees on the language and

†This work has been partially supported by the European Commis-

sion within the framework of the Clean Sky CertMod project with call

identifier SP1-JTI-CS-2012-01.

tools used for their development; the most important

ones are: determinism and absence of ambiguities. For

example, implicit and undefined behaviors are problem-

atic in such settings and would lead to additionnal verifi-

cation activities (e.g. tests or reviews) to satisfy the cer-

tification objectives. Hence, the need for a programming

language with unambiguous semantics appears clearly if

one wants to use it in the development of safety-critical

software.

Formalizing the language is a good way to ensure its

correctness and analyze the safety issues it could raise.

In the scope of the CertMod project1, we worked on

formalizing the static semantics of a Modelica subset as

a basis for a qualified code generator development. In

the remainder of this paper we use the terms qualifica-

tion and certification as defined in DO-330 (2011): “Tool

qualification is the process necessary to obtain certifica-

tion credit for a tool.” The current paper relates part of

the results we produced during this project, which aims

to provide a complete specification that can be used to

develop a qualified code generator for Modelica. We fo-

cus on the basis elements identified in the scope of the

CertMod project.

The contributions of this paper are the following:

• the definition of a practical subset of Modelica that

can be formalized and used in a safety-critical con-

text,

• a framework to formalize the various static aspects

of Modelica and

• a formalization of static name resolution in

Modelica.

The remainder of this paper is structured as follows:

section 2 is a review of existing related work. Section 3

outlines the Modelica subset that is considered. Section

4 defines the formalization framework that will be used

together with the notations. Section 5 depicts the name

resolution within the formalism. Section 6 details the

open points and future work.

1http://cordis.europa.eu/project/rcn/111584_

en.pdf

DOI
10.3384/ecp15118637

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

637

2 Related Work

Modelica Association (2012) is the reference document

for Modelica specification; it describes in natural lan-

guage in a pretty free style all the constructs of the lan-

guage and their behaviours in different contexts. The

description of a given construct can be scattered over

the entire specification document. This makes it hard to

ensure that an implementation entirely respects it. For-

malizing the language requires to be systematic in the

description, in the sense of identifying the different as-

pects of correctness (naming, typing, clocking, ...) and

for each of them going through each construct and define

its correction condition with respect to this aspect. One

of the first benefits of a formalization is to provide an or-

ganization of the different concerns. It was already iden-

tified in Broman et al. (2006) that the Modelica specifi-

cation could benefit from a more formal definition. The

language has grown complex and a lot of constructs in-

teract with each other, hence it has become hard to reason

about Modelica models. Another benefit of a formal de-

scription is to reduce the possible interpretations to the

intended one; this goal is reached by the use of mathe-

matical and well defined notations.

Modelica was not designed with safety-critical em-

bedded controllers in mind. This means that some lan-

guage features are either not relevant or not defined ap-

propriately for such applications. This was discussed in

Thiele et al. (2012) where a Modelica sub- and superset

was sketched to address safety requirements. Our subset

is based on the one identified in this work, but we decided

to define a strict subset and no superset of Modelica. This

decision to have a strict subset is motivated by the will-

ingness to seamlessly integrate with existing implemen-

tations. No change is required between the model being

simulated and the one generating the actual code.

Implementations compliance rapidly arises when sev-

eral implementations of Modelica exist and different be-

haviors are observed. For example, protected el-

ements in OpenModelica2 may be accessed with the

dot-notation whereas Dymola3 does not allow to access

protected classes. Also, the specification may be in-

complete on some points and implementations must in-

terpret it. For instance, defining the scope in which re-

declaration as modifications takes place is subject to con-

troversy4.

c l a s s A
r e p l a c e a b l e c l a s s R end R ;

end A;

c l a s s S type T = Real ; end S ;

2https://openmodelica.org/
3http://www.3ds.com/products-services/catia/

products/dymola
4For instance https://trac.modelica.org/Modelica/

ticket/1680

c l a s s B
ex tends A(r e d e c l a r e c l a s s R = S) ;
ex tends C ;

end B ;

c l a s s C
c l a s s S type T = I n t e g e r ; end S ;

end C ;

According to the specification, it is unclear what

B.R.T represents, whether it is C.S.T (i.e. Integer)

or .S.T (i.e. Real). Even though the various imple-

mentations agree on this particular ambiguity, it is still

problematic in the context of a certification process, be-

cause the specification is the reference, not the imple-

mentation.

To address such problems, test suites can help disam-

biguating situations. A Modelica compliance test suite5

is being developed that aims to validate various imple-

mentations of Modelica. Such test suites are useful to

validate a compiler but can become hard to maintain

up-to-date over time. In any case, these tests need or-

acles to validate implementation outputs and these ora-

cles must be defined by the language specification. This

is particularly important in a certification process such

as DO-178C (2011), which requires to have test oracles

based upon the specification. The typical approach used

for software development is to write requirement based

specification documents and test oracles are written us-

ing these requirements. This process allows for a clear

traceability between requirements and test cases.

As of today, if the goal were to implement a quali-

fied code generator for Modelica, the specification from

Modelica Association (2012) coupled with a test suite

would probably not satisfy a certification authority re-

quirements.

In the industry, languages used to write embedded

controllers are not all formalized. For instance, the C

programming language is standardized6 but implementa-

tions of certain constructs diverge depending on the com-

piler or the target platform. In the embedded software

world, some rules and constraints are widely accepted

and used to define a subset of C that aims to be safer.

These guidelines are known under the name MISRA C7.

The ultimate step in the formalization direction is hav-

ing a formally described language and formally proven

compiler, which gives a comprehensive formal proof that

each transformation in the compiler preserves the se-

mantics of the input program. The most advanced work

in this area is incarnated by the CompCert C compiler

Leroy (2009).

Finally, in the model-based approach to embedded

software development, Scade 6 is the industrial dialect

of the dataflow language Lustre, Halbwachs et al. (1991),

extended with state machines, Colaço et al. (2005).

Since the latest major evolution of the language called

5https://github.com/modelica-compliance
6For example by the ISO/IEC 9899:1999 aka. C99 standard.
7http://www.misra.org.uk/

Towards a Formalized Modelica Subset

638 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118637

Scade 6, the entire language static semantics is formally

defined by various type systems that cover all constructs

of the language. This work follows the approach chosen

in the design of Lucyd Synchrone Pouzet (2006). This

formalization is the basis of the Scade 6 certified com-

piler implementation. The present work is based on the

very same idea and aims to provide a similar formalism

level for a Modelica subset.

3 A Practical Modelica Subset

As we mentioned in the introduction, Modelica has a

lot of constructs. Historically designed to model multi-

physics systems with continuous time, it gains only re-

cently the ability to describe synchronous controllers.

In the scope of qualified embedded controllers devel-

opment, only these synchronous features are of interest.

Moreover, continuous time features are hard to formally

describe and lots of behaviors depend on the solver at

runtime. That is why we made the choice to formally de-

scribe a Modelica subset instead of taking the complete

language.

To be of any practical use, the subset must be as com-

plete as possible so that its expressiveness is not sacri-

ficed for the sake of the formalization simplicity.

A first subset was described in Thiele et al. (2012),

which was quite conservative. For example, import

clauses where excluded from this subset. This kind of re-

striction can rapidly become annoying when dealing with

existing libraries that make heavy use of import clauses

(including the Modelica standard library. Our work is

based on this subset with some additions to make it a

more realistic subset.

3.1 Declarations

In the Modelica specification the language is defined

as an EBNF8 but syntactically allows for incorrect con-

structs. For instance, the EBNF does not prevent one

from writing

f u n c t i o n F
input I n t e g e r i ;
output I n t e g e r o ;
equat ion

o = i ∗ 3 ;
end F ;

This kind of class declaration is illegal (Modelica As-

sociation, 2012, section 12.2) as functions may not have

equations but only statements in an algorithm section.

However, this declaration is syntactically allowed (Mod-

elica Association, 2012, section 4.5).

In comparison, the subset aims to syntactically enforce

as many constraints as possible. Syntactically enforc-

ing constraints allows for less normalization steps and

checks after parsing, and makes the formalism simpler.

8Extended Backus-Naur Form

We added more syntactical restrictions on declara-

tions. For example a package can only be defined in-

side a package and not inside other specialized classes.

The same constraint exists for functions, which can only

be declared in packages. Having a function declared in

something else than a package makes it parameterized by

all components of the class it is declared in. This restric-

tion was thought as a way to improve modularity. In the

following, we do not reason about the flattened model

but about the structured input models. Checks that are

described can be done in a modular way (i.e. without

effective computation of the flattened model). Modifica-

tions in classes makes modular reasoning more complex.

Also, we see functions as pure functions (Modelica As-

sociation, 2012, section 12.3) in the sense that they are

side-effect free, and thus must not depend on the context

of instantiation.

Modelica also allows many of type prefixes, or mod-

ifiers, for components. They are not all present in the

subset. For instance, inner and outer components are

not included, as they introduce an implicit binding that

makes it hard to reason about. We will discuss this in

section 6.

Declarations in Modelica can also be redeclared in

inheriting classes. This features makes it possible to

change the behavior of an inherited component by re-

placing it with another component. Although it is not

forbidden by certification processes such as DO-178C

(2011) and its object-oriented extension DO-332 (2011),

we identify this feature as dangerous. Replacing or

redeclaring components in this context requires more

checks and validation to be performed to ensure that the

global behavior and invariant of the inherited model are

respected. This feature is not included in the subset,

however parameter modifications are.

3.2 Equations

The selected subset contains basically all kind of equa-

tions that are meaningful in the context of synchronous

models. It means the subset accepts these equations:

• simple equations that are flow definitions.

• if-equations

• clocked when-clauses

• connect-clauses

The only missing equation kind are for-equations.

Their general form as defined in (Modelica Association,

2012, section 8.3.2) may introduce patterns that cannot

be statically verified. Even though the expression the

loop iterates over is required to be a parameter, it still al-

lows to multiply define some cells of a vector or to leave

some other cells non-initialized. However, adding for-

equations that reduce to a map operator will be consid-

ered in future developments.

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118637

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

639

3.3 Expressions

The restrictions on the expressions are essentially the

same as in Thiele et al. (2012). All continuous-time

related operators are not included as they do not make

sense in this context. On the other hand, most of the ex-

pressions related to synchronous features are included.

The aim of this paper is not to describe the subset en-

tirely, and the complete grammar could not fit here. For

the complete, refer to Satabin et al. (2015).

4 Formalization framework

The main contribution of this paper is to define a frame-

work that can be used to formalize various aspects of the

Modelica language. In programming language theory, it

is used to distinguish two aspects of a language seman-

tics:

• the static semantics, which corresponds to a certain

(language dependent) level of correctness of syn-

tactically correct programs required before execu-

tion, this aspect is statically checked at compile-

time (i.e. without execution) and

• the dynamic semantics, which describes the behav-

ior of the programs that are both syntactically and

statically correct.

This separation reduces the set of programs to be consid-

ered by the dynamic semantics, in which one can assume

that all the static aspects are respected.

In this work we focused on the static semantics of

Modelica, which encloses:

• Static name lookup (Modelica Association, 2012,

section 5.3).

• Type checking (Modelica Association, 2012, chap-

ters 6 to 14).

• Clock checking (Modelica Association, 2012,

chapter 16).

For each of these aspects we defined a dedicated sys-

tem of inference rules, derived from the Modelica spec-

ification. The formalism used is based on works such

as Igarashi et al. (2001), Igarashi (1999) for the object-

oriented and type part or Forget et al. (2008) for the clock

checking.

The Modelica syntax is rich and each construct may

have several shapes. While writing a formalization it is

more readable to have only one shape for each construct.

That is why, the first step before formalizing is the nor-

malization of declarations. 9

9Note that this normalization must preserve correctness i.e. an in-

correct program cannot normalize into a correct one and reciprocally.

4.1 Component Clauses

Components in Modelica are declared with component

clauses. One such clause can declare several components

of different array types. Moreover, clauses are grouped

into public and protected sections which defines the vis-

ibility of each component declared in this section. Even

though these syntactic constructs are allowed in our sub-

set, component clauses are normalized so that:

• each clause declares exactly one component;

• each clause has a visibility, written ν, which corre-

sponds to the section it is declared in;

• each clause has a set of modifiers (with restrictions

discussed in section 3) written µ. If a declaration

has no modifiers µ is the empty set, written ∅;

• each array subscript appears after the component

name.

The normalization of component clauses is depicted

in figure 1 where :

• c, c1, ..., ci represent component declara-

tions with potential array subscripts ;

• T represents a type identifier with potential array

subscripts and

• t is a type identifier.

Hence, a component declaration is written ν µ T c.

We will also use lists of components in the following

which will be written ν µ T c. This notation is a short-

cut for ν1 µ1 T1 c1, ..., νn µn Tn cn for some

n ∈ N∗

4.2 Short Class Definitions

Modelica allows for so-called short class definition

(Modelica Association, 2012, section 4.5.1). It is pre-

sented as syntactic sugar for simplified standard class

definitions which does not introduce a new scope. Our

subset allows for such declarations only for type and

connector. The normalizing function rewriteShort is

given in figure 2.

The component name λ is a fresh name which is gen-

erated during rewriting. Referring to a component whose

type is declared with short class definition is equivalent

to accessing the λ component. Enumerations are not

rewritten because their only possible shape is with the

short class definition. In the following, special rules will

be written to handle them.

Towards a Formalized Modelica Subset

640 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118637

normDecl(ν µ t [n1, ..., np] c;) = ν µ t c[n1, ..., np];

normDecl(ν µ T c1, ..., cq;) = normDecl(ν µ T c1;) ... normDecl(ν µ T cq;)

normDecl(ν µ t c;) = ν µ t c;

Figure 1. Normalization of component clauses

rewriteShort(connector C = µ T) = connector C µ T λ; end C

rewriteShort(type C = µ T) = type C µ T λ; end C

rewriteShort(type C = µ T[n]) = type C µ T λ[n]; end C

where each occurrence of λ is fresh.

Figure 2. Normalization of short class definitions

4.3 Names

Components in Modelica are referred to by either simple

names of the form C or by composite names of the form

A.B.C (Modelica Association, 2012, chapter 5). These

composite names, or paths, can be absolute, in which

case they start with an dot, as in .A.B.C. To handle

all paths uniformly in the upcoming formalization, we

introduce the root package name, written ⋆. Absolute

paths are thus written ⋆.A.B.C and all paths have the

same shape.

In the following, we will differentiate between ab-

solute resolved paths and unresolved paths (which can

be either relative or absolute). For the sake of read-

ability we will use notation P for absolute paths of the

form ⋆.A.B.C and P for unresolved paths of the form

A.B.C.

4.4 Class Table

A Modelica model usually contains several classes or-

ganized into packages. These classes are stored in a ta-

ble, written CT , that maps absolute class paths to their

definition. A same path can only refer to at most one

class definition. Construction of CT is done by walk-

ing through the syntactic structure of the model and by

adding each encountered class definition name prefixed

by its enclosing package path. This construction may

fail if two classes are located at the same path. If it

succeeds, all classes of the model are present in this ta-

ble. The function dom is used to check whether an abso-

lute path is an existing class with the notation A.B.C ∈

dom(CT).

In the remainder of this paper, we consider that CT was

successfully built.

After the short class definition rewriting that was dis-

cussed previously we can see classes in CT as the sets of

components that are syntactically declared in them. For

example, let’s consider the class C below:

c l a s s C ;
I n t e g e r C1 ;
parameter Boolean C2 ;

end C ;

Conceptually this class is equivalent to the set of com-

ponent declarations C1 and C2, written {Integer C1;

parameter Boolean C2}. We will use the notation

Integer C1 ∈ CT(A.B.C) as a way to express the

fact that a component is declared in a class.

4.5 Specialized Classes

The Modelica specification defines several specialized

classes (Modelica Association, 2012, section 4.6). Most

of the time, the specialized class kind does not matter,

and they all are treated the same way and we will use

the notation ckind to denote any specialized class kind.

However sometimes the kind of specialized class is rele-

vant to check some restrictions or allow some extensions.

To this end, we define a function named kind, depicted

in figure 3, that, given a class absolute path, returns the

kind of specialized class it represents.

kind(⋆) = package

kind(C) = ckind if CT(C) = ν ckind C . . .end C

kind(C) = type if CT(C) = ν type = enumeration(. . .)

Figure 3. Specialized class kind

5 Name Resolution

As part of the formalization of Modelica’s static seman-

tics, the first aspect to consider is the name resolution. It

is crucial in the sense that there must exists no ambiguity

on what is referred to when a name is used in a model

and neither correction can be decided nor compilation

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118637

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

641

done without linking referenced names to the definition

of the identified entity. Modelica has several features that

are involved in this step and several rules that must be re-

spected. It has modularization features, such as packages

and visibility, that are to be taken into account.

In this section we propose a formalism for name res-

olution in our subset discussed in 3. It is written as a

bunch of inference rules, each of which will be linked to

the sections in the Modelica specification it was derived

from.

5.1 Import Clauses

Classes and components can be imported in other classes

to shorten the name that are referred to. There are four

kinds of import clauses in Modelica (Modelica Associa-

tion, 2012, section 13.2.1):

1. import A.B.C where C becomes visible in the

lexical scope of the import clause.

2. import A.B.{C, D, E} where C, D and E be-

come visible in the lexical scope of the import

clause

3. import A.B.* where all elements defined in

A.B become visible in the lexical scope of the

import clause.

4. import D = A.B.Cwhere A.B.C becomes vis-

ible with name D in the scope of the import clause.

Clauses of the second form can be reduced to case

one by duplicating import clauses as many times as

there are imported elements and will be treated as such

in the following. In case three the import clause is said

to be unqualified and has lower priority than other import

clauses that are said to be qualified (Modelica Associa-

tion, 2012, section 5.3.1). Case four allows to introduce

a different local name for imported elements that other-

wise would conflict.

Imported names are always fully qualified names

(Modelica Association, 2012, section 13.2.1.1). It means

that if one writes import A in Modelica, it will be

treated as import ⋆.A. In other words, only absolute

composite names are imported.

We define the imports function that will be used in

the following to get the list of unresolved import from

a resolved path. Each import returned by this function

is the pair containing the import name and the imported

path. In the case of unqualified imports, the empty set

symbol ∅ is returned instead of a name.

imports(C) = { namePath(imp) |imp ∈ CT(C) }

where function namePath is defined by:

namePath(import A.B) = (B, A.B)

namePath(import C = A.B) = (C, A.B)

namePath(import A.*) = (∅, A)

5.2 Inheritance

Modelica is an object-oriented language that allows for

multiple inheritance (Modelica Association, 2012, sec-

tion 7.1.1). A class may contain as many extends

clauses as wanted in any order. We define the func-

tion extends which returns the list of unresolved extended

path of a resolved path.

extends(C) = { X | extends X ∈ CT(C) }

5.3 Visibility

Modelica defines two level of visibility: public and

protected. The protected visibility means that the

element cannot be accessed via the dot notation (Model-

ica Association, 2012, section 4.1). Visibility appears in

several kinds of clauses: extends clauses, component

clauses and class definition. An extends clause may

be protected, which means that all inherited components

and classes are considered protected from the inherit-

ing class (Modelica Association, 2012, section 7.1.2).

When resolving names, we would need to check that

a name is visible when accessing it with the dot notation

(Modelica Association, 2012, section 4.1).

5.4 Static Name Lookup

Based on the previous definitions, we can define name

lookup in our Modelica subset. It starts with the static

name lookup, where all the classes and their component

names are resolved. The complete set of rules are de-

picted in figure 4.

Judgements of these rules must be read as follows:

• P ⊢ C
•
⇒ Dmeans “the simple name C seen from

P is resolved to path D.”

• P ⊢ C
◦
⇒ Dmeans “the simple name C seen from

P is resolved to path D by only using named ele-

ments of P or its super classes.”

• P ⊢ C
◦

⇑ means “the simple name C seen from P

cannot be resolved by only using named elements

of P or its super classes.”

• P ⊢ C
•

⇑ means “the simple name C seen from P

cannot be resolved by using named elements of P

or its super classes nor import clauses of P.”

Conceptually, the class path on the left of the ⊢ sym-

bols gives the scope of the lookup and unambiguously

describes where the search must start.

Several aspects of the static name lookup are of inter-

est in this formalization. First, visibility is not taken into

account. The reason why and impacts will be discussed

in section 6. Then, we can see that few rules are needed

Towards a Formalized Modelica Subset

642 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118637

N-Root
⊢ ⋆

◦
⇒ ⋆

P ⊢ C
◦
⇒ D

N-Self
P ⊢ C

•
⇒ D

P.C ∈ dom(CT) ν µ T C < CT(P)
N-InCT

P ⊢ C
◦
⇒ P.C

P.C < dom(CT) ν µ T C ∈ CT(P)
N-Comp

P ⊢ C
◦
⇒ P.C

C.D < dom(CT) ν µ X D < CT(P)

X ∈ extends(C), (C ⊢ X
•
⇒ Y ∧ Y ⊢ D

◦
⇒ T)

∀ Z ∈ extends(C), C ⊢ Z
•
⇒ W ∧ (W ⊢ D

◦
⇒ T ∨ W ⊢ D

◦

⇑)
N-Super

C ⊢ D
◦
⇒ T

P.C < dom(CT) ν µ X C < CT(P) ∀ X ∈ extends(P), P ⊢ X
•
⇒ Y ∧ Y ⊢ C

◦

⇑
N-NoSelf

P ⊢ C
◦

⇑

C ⊢ D
◦

⇑

(D, X.Y) ∈ imports(C) ⋆ ⊢ X
•
⇒ P P ⊢ Y

◦
⇒ E kind(P) = package

N-ImportQual
C ⊢ D

•
⇒ E

C ⊢ D
◦

⇑ (D, _) < imports(C)

(∅, X) ∈ imports(C) ⋆ ⊢ X
•
⇒ P P ⊢ D

◦
⇒ E kind(P) = package

N-ImportUnqual
C ⊢ D

•
⇒ E

P ⊢ C
◦

⇑ (D, _) < imports(C) ∀ (∅, X) ∈ imports(P), P ⊢ X
•
⇒ Y ∧ Y ⊢ C

◦

⇑
N-NoImport

P ⊢ C
•

⇑

CT(P) = ckind P ...end P P.C ⊢ D
•

⇑ P ⊢ D
•
⇒ E

N-Encl
P.C ⊢ D

•
⇒ E

CT(P) = encapsulated ckind P ...end P P.C ⊢ D
•

⇑ ⋆ ⊢ C
•
⇒ E

N-Encaps
P.C ⊢ D

•
⇒ E

P ⊢ C
•
⇒ D D ∈ dom(CT) D ⊢ E

◦
⇒ F kind(D) = package

N-Dot
P ⊢ C.E

•
⇒ F

Figure 4. Static Name Lookup

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118637

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

643

to formally describe the entire static lookup semantics. It

represents aspects that are scattered in the specification,

all put together here in a unified framework.

N-Root indicates that the root package name ⋆ always

resolves to itself. It is the base case when looking up

in the enclosing classes. All predefined types (such as

Integer) and predefined functions (such as abs) are

considered to be defined in the root package.

N-Self simply states that if a simple name can be re-

solved with the named elements of a class or its super

classes, then it is resolved. It is kind of a weakening rule

for name resolution since the premise gives a stronger

information than the conclusion.

The base rules N-InCT and N-Comp look up for a sim-

ple name in the current class. They state that if a simple

name is declared in the current class, then it resolves to

this name augmented with the path of the current class.

The same name cannot be defined twice in the same class

(Modelica Association, 2012, section 5.6.3).

The rule N-Super treats the case where a simple name

is defined in inherited classes. A same name C can be in-

herited multiple times if and only if all inherited elements

with name C are exactly identical (Modelica Association,

2012, section 7.1). In this rule identical means that the

resolved path is the same for all inherited elements with

name C.

If the rules we saw so far do not apply to resolve a

simple name C, then we conclude that it is not defined in

the current class. This is what the rule N-NoSelf means.

In such a case, the rules N-ImportQual and

N-ImportUnqual may be applied, to lookup for the sim-

ple name in the import clauses. The former rule looks

up for the name in qualified imports, while the latter

one looks up in unqualified import if no qualified im-

port clause allowed to resolve the name (Modelica As-

sociation, 2012, section 5.3.1). Imported paths are re-

solved starting in the root package (Modelica Associa-

tion, 2012, section 13.2.1.1) and names can only be im-

ported from packages (Modelica Association, 2012, sec-

tion 13.2.1.2). Our subset allows packages to be defined

only packages, that is why it is sufficient to check that

only the last element of the path is a package.

If none of the import-related rules described in the pre-

vious paragraph applies to resolve a simple name C, then

we conclude that it is not defined in the current class, nor

is it imported. This is the meaning of rule N-NoImport.

Only in this case, the simple name must be resolved

by looking up in the enclosing classes. Two different

cases may apply at this point depending on the defi-

nition of the current class. If the current class is de-

clared encapsulated, rule N-Encaps applies and the

name is looked up in the root package (Modelica As-

sociation, 2012, section 5.3.1). In the case the class is

not encapsulated, rule N-Encl applies and the name

is looked up in the directly enclosing class.

Finally, the last case deals with composite names. The

set of rule deals only with static name resolution, which

means that composite names corresponding to compo-

nent accesses of class instances are not treated here. We

will discuss such cases in section 5.5. Static resolution

of composite names is only allowed for names defined in

packages, as stated by rule N-Dot. The last name in the

path is looked up among elements defined or inherited in

the package resolved so far (Modelica Association, 2012,

section 5.3.2).

5.5 Component Lookup

In the previous section we covered the static name

lookup only. This is, the resolution of class names in

packages and component names in packages. Compos-

ite names that access components inside components re-

quire some typing information to be resolved. They in-

deed require to be aware of the structure of the com-

ponent to decide what component the name represents.

This structure is only known once all static names are

resolved. We can then gather the list of components in

a component using the components function depicted in

figure 5. The extendComponents function allows to re-

trieve all inherited components.

Components of a resolved class are all the components

defined in this class or inherited. Resolving accesses to

components is done by the type checking. The type sys-

tem is beyond the scope of this paper, but the typing rule

T-Dot which describes component access in a compo-

nent would look like this.

n: T ν µ C c ∈ components(T)
T-Dot

n.c: C

It reads as: if a simple name n has a resolved type T,

then we can resolve and type n.c if c is a component

of T with type C. Of course this rule is just a sketch and

more concepts are taken into account by the real type

system.

5.6 Class Resolution

A class in Modelica is said to be resolved if several con-

straints are respected:

• All component types can be resolved ;

• All import-clauses can be resolved ;

• All extends-clauses can be resolved ;

• All components defined in a class must have names

distinct from inherited components. In Modelica

component may have the same name if they are syn-

tactically equal (Modelica Association, 2012, sec-

tion 7.1). The specification recommends to emit a

warning in this case, but we decided to forbid it, as

it does not bring anything to define twice compo-

nents that are exactly the same, and most probably

it is a symptom of model design problem ;

Towards a Formalized Modelica Subset

644 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118637

extendComponents(C) =
⋃

D ∈ extends(C) { νx µx X x | νx µx X x ∈ components(D) }

components(C) =

{ public C Ei | i∈ [1..n] } if CT(C) = enumeration(E1, . . ., En)

{ ν µ X x | ν µ X x ∈ CT(C) } ∪ extendComponents(C) otherwise.

Figure 5. Component Lookup Function

• All qualified import-clauses to distinct names ;

• All unqualified import-clauses bring distinct

names into scope ;

Rule N-Class in figure 6 gives the rule that ensures

that all names are resolved in a class. And that all con-

straints defined above are respected.

6 Discussion and Future Work

In the context of the CertMod project, we also formalized

type checking and clock checking of models based on

similar rules. This work is the basis that we used to write

a complete Modelica front-end that performs all static

checks we described on input models. It can also be used

to write or verify oracles in a compliance test suite, and

then test the model checker against these oracles.

Some restrictions present in the current subset could

be removed, and some omissions could be added. For

instance, we did not take visibility of elements into

account. This was motivated by our tests on various

Modelica implementations which did not agree with nei-

ther the specification nor between each other. Adding

visibility to the name resolution rules would be quite

easy though. Only rules N-Import and N-Dot would

need to take this visibility into account. The extends

function would also require to return the visibility of the

extends clause. Similarly the sketched T-Dot rule would

require that ν is public.

Other constructs that were not taken into account in

name resolution rules in this paper are inner/outer

declarations (Modelica Association, 2012, section 5.4).

These constructs introduce an implicit name, inherited

from an enclosing class. They represent a handy way

of having global parameters in a model that we do

not bother passing explicitly to each part requiring it.

Adding these constructs to the subset would require to

add rules to resolve outer names. These rules would

be quite complex, considering the restrictions and con-

straints that exists on them. The rules must represent

the fact that the closest inner component with the same

name is selected when the class is instantiated.

Redeclarations in inheriting classes are also not in-

cluded in our subset. Redeclaring classes allows for hav-

ing a class name denoting a completely different path

in a sub-class than in the inherited one. Remember the

lookup scope problem for redeclarations we discussed in

section 2. Formalizing redeclarations would definitively

help clarify the situation by having a non ambiguous way

of describing the lookup scope. However, the resulting

rules would be quite complex because for each name one

should lookup for the current redeclaration, if any.

This added complexity makes it harder to read and un-

derstand the rule, but is symptomatic of an intrinsic com-

plexity in the language construct. As a rule of thumb, the

fact that a construct introduces complexity in the formal-

ism can be seen as a hint whether the construct is legit or

not. A too high complexity reflects a construct that will

be hard to understand for modelers, and to implement

correctly by tool providers.

7 Conclusion

In this work, we described all the rules related to name

resolution as described in the Modelica specification. It

was interesting and enlightening to compile the rules and

constraints that appear at various places in the specifi-

cation into a single place. It also allowed us to detect

some features that may be problematic to write a qual-

ified code generator for Modelica. For example, in the

rules depicted in figure 4, the involved concepts are usual

in object-oriented languages. However, the unqualified

import clause lookup described by rule N-ImportUnqual

implies a priority in name lookup that would require

more validation activities to be used. The mix with quali-

fied imports makes it also harder for the modeler to deter-

mine which element is selected. The safest way to deal

with this problem would be to avoid unqualified imports

all together, and to exclude them from the subset. More-

over, the encapsulated concept appears to be quite exotic

and would also require extra checks to be performed as

it introduces some irregularities in the lookup algorithm.

Language features must ensure the highest possible level

of safety, and restricting some constructs can benefit to

developers. Expressiveness is important in a language

but for safety-critical software development, safety and

non ambiguity is even more important.

The considered subset presented here only includes

discrete synchronous features of Modelica and the for-

malization only deals with static aspects of this subset.

Adding the dynamic semantics of the subset appears to

be an important step to take to achieve a comprehensive

formal description of the language. Such a semantics

would describe how a model behaves when it is instan-

tiated and how the generated code must behave as well.

This can be used to write oracles in the test suite and then

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118637

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

645

∀ ν µ X x ∈ CT(C), C ⊢ X
•
⇒ _

∀ (_, X) ∈ imports(C), C ⊢ X
•
⇒ _

∀ X ∈ extends(C),

(

C ⊢ X
•
⇒ X ∧ ∀ νc µc C c ∈ CT(C),X ⊢ c

◦

⇑

)

∀ ((N, X), (N, Y)) ∈ imports(C)× imports(C),

(

⋆ ⊢ X
•
⇒ D ∧ ⋆ ⊢ Y

•
⇒ D

)

∀ ((∅, X),(∅, Y)) ∈ imports(C)× imports(C),

⋆ ⊢ X
•
⇒ A

∧ ⋆ ⊢ Y
•
⇒ B

∧ A ⊢ C
◦
⇒ _ =⇒ B ⊢ C

◦

⇑

N-Class
C

Figure 6. Class Resolution

validate simulators as well as code generators and check

that they agree on the behavior through the test suite.

A complete formal semantics of a language brings

also the possibility to write proofs on the language. This

is useful to ensure that the type-system is sound and that

the language has a deterministic behavior. Reaching this

point naturally requires a lot more work to be done, and

the continuous part of Modelica would be quite problem-

atic to semantically describe.

The presented work is a first small step toward hav-

ing a formally described version of Modelica. Although

we only covered a small part of the various aspects of

the language, it sets up a framework for a more com-

prehensive formalization. It already brings some clar-

ity where rules written in English may be misinterpreted.

It is also a comprehensive, concise and non-ambiguous

way to describe these rules. We believe that it is a huge

step forward and that it can help clarifying things when

it is hard to interpret the specification. We also believe

that this work can help in writing the next versions of the

Modelica specification. Not necessarily does it mean that

this exact formalism must be included in it, but having

this way of describing behaviors in mind helps writing

more comprehensive and rigorous specification.

Acknowledgments

We would like to particularly thank Martin Otter, Bern-

hard Thiele and Daniel Schlabe for their precious help

and their answers during this work. We also want to

thank Marc Pouzet for his comments on the clock cal-

culus we developed in this project.

References

David Broman, Peter Fritzson, and Sébastien Furic. Types in

the modelica language. In Proceedings of the Fifth Interna-

tional Modelica Conference, 2006.

Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. A Con-

servative Extension of Synchronous Data-flow with State

Machines. In EMSOFT’05, September 2005.

DO-178C. DO-178C Software Considerations in Airborne

Systems and Equipment Certification, December 2011.

DO-330. DO-330 Software Tool Qualification Considerations,

December 2011.

DO-332. DO-332 Object-Oriented Technology and Related

Techniques Supplement to DO-178C and DO-278A, De-

cember 2011.

Julien Forget, Frédéric Boniol, David Lesens, and Claire

Pagetti. A multi-periodic synchronous data-flow language.

In HASE 2008. 11th IEEE. IEEE, 2008.

Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel

Pilaud. The synchronous dataflow programming language

lustre. In Proceedings of the IEEE, 1991.

Atsushi Igarashi. Formalizing Advanced Class Mechanisms.

PhD thesis, University of Tokyo, 1999.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler.

Featherweight java: A minimal core calculus for java and

gj. ACM Trans. Program. Lang. Syst., May 2001.

Xavier Leroy. Formal verification of a realistic compiler. Com-

munications of the ACM, 52(7), 2009.

Modelica Association. Modelica – A Unified Object-Oriented

Language for Systems Modeling, version 3.3. http://

modelica.org, May 2012.

Marc Pouzet. Lucid Synchrone, version 3. Tutorial and refer-

ence manual. Université Paris-Sud, LRI, April 2006.

Lucas Satabin, Olivier Andrieu, Bruno Pagano, and Jean-Louis

Colaço. Formalization of A Modelica Subset for Safety-

Critical Software Development. Technical report, Esterel

Technologies, 2015.

Bernhard Thiele, Stefan-Alexander Schneider, and Pierre R

Mai. A Modelica Sub-and Superset for Safety-Relevant

Control Applications. In Proceedings of the Ninth Inter-

national Modelica Conference, 2012.

Towards a Formalized Modelica Subset

646 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118637

