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Abstract 

This paper describes a proposal on how to model 

formal requirements in Modelica for simulation-based 

verification. The approach is implemented in the open 

source Modelica_Requirements library. It requires 

extensions to the Modelica language, that have been 

prototypically implemented in the Dymola and Open-

Modelica software. The design of the library is based 

on the FOrmal Requirement Modeling Language 

(FORM-L) defined by EDF, and on industrial use cases 

from EDF and Dassault Aviation. It uses 2- and 3-

valued temporal logic to describe requirements. 

Keywords: requirements, verification, physical 

systems, 3-valued logic, temporal logic. 

1 Introduction
1
 

1.1 Overview 

To ensure the proper operation of complex physical 

systems such as power plants, aircraft or vehicles, 

requirements are issued all along the system’s 

lifecycle: from the preliminary design phase to the 

operation phase. Typically, the requirements capture 

the spatiotemporal and quality of service conditions 

that a system should fulfill. They may be quite 

complex and numerous. Testing the compliance of the 

system with the requirements may be quite 

challenging, due to the many items that should be 

examined and verified for a given test scenario, and the 

number of test scenarios to be considered to have a 

satisfying verification coverage.  

This paper tries to improve the current situation, by 

(a) providing the open source library Modelica_-

Requirements to define and model requirements in a 

formal way using 2- and 3-valued linear temporal logic 

(LTL); (b) associating requirement models with 

behavioral models; (c) testing whether the defined 

                                                 
1 This section uses material from the internal reports (Bouskela et al. 

2015) and (Otter et al., 2014). 

requirements are violated by the system design 

currently studied when the underlying behavioral 

models are simulated. This approach requires 

extensions to Modelica, that have been prototypically 

implemented in Dymola (Dassault Systèmes, 2015) 

and in OpenModelica (Open Source Modelica 

Consortium, 2015). The library has been tested and can 

be used by both of these Modelica simulation 

environments. 

The main purpose of this approach is to check 

formally defined requirements by simulation. It is not 

intended to perform formal model verification by 

model checkers as done by tools such as NuSMV
2
, 

SPIN
3
, Prover Plug-in

4
 for discrete systems or 

SpaceEx
5
, KeYmaera

6
 for hybrid systems. For 

example, a differential-algebraic equation system may 

be solved numerically to compute a pressure p in a 

pipe, and the requirement is formulated as p ≥ pcavitate. 

Model checkers for discrete systems cannot be used in 

this case, and verification tools for hybrid systems can 

only handle simple sets of differential and discrete 

equations, but not large models of industrial 

applications like power plants or aircraft. 

1.2 State-of-the-art to Define Requirements 

The standard in industrial applications is still to define 

requirements in natural language in textual form. As a 

typical example see the requirements for electrical 

systems in US military aircraft MIL-STD-704F 

(Department of Defense, 1984). Such specifications are 

defined in reports by using for example Microsoft 

Word, or with dedicated tool support. The latter 

especially to get support for collaboration, traceability, 

coverage analysis of textually defined requirements. 

Moreover, visual modeling languages for system 

                                                 
2 NuSMV: http://nusmv.fbk.eu/ 
3 SPIN: http://spinroot.com/spin/whatispin.html 
4 Prover Plug-in: http://www.prover.com/products/prover_plugin/ 
5 SpaceEx: http://spaceex.imag.fr/ 
6 KeYmaera: http://symbolaris.com/info/KeYmaera.html 
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engineering are very common, such as SysML
7
, a 

general-purpose modeling language for systems 

engineering applications, that defines requirement and 

parametric diagrams for supporting the modeling of 

system properties. In particular, requirement diagrams 

provide constructs and mechanisms to express and 

compose system requirements, as well as to allocate 

them to system components; parametric diagrams can 

be used for supporting performance analysis and 

quantitative assessment. There are a number of tools in 

this area, for example: Rational DOORS from IBM
8
, 

Reqtify from Dassault Systèmes
9
, OSRMT (GPL2)

10
, 

formalmind Studio (free)
11

. The most important xml-

based exchange format seems to be ReqIF (OMG, 

2013).  

Defining and processing requirements formally is an 

area of active research. The exploited mathematics uses 

propositional logic, temporal logic, set theory and 

others; see for example (Baier and Katoen, 2008; 

Lamport, 2015). There are many publications, but the 

pure mathematical notation is quite far away from a 

language an engineering practitioner would be able to 

use.  

For electronic circuit design, there is a proposal for 

an Analog Specification Language (ASL) by 

(Steinhorst and Hedrich, 2009), with a detailed 

proposal of language elements and some examples. In 

(Schamai, 2013) the idea for formalizing a natural-

language requirement into a requirement violation 

monitor is presented. In runtime verification, monitors 

are expressed in some variant of linear temporal logic 

expressions and to generate efficient code for the actual 

monitors (Leucker and Schallhart, 2009).  

The SIMULINK toolbox “Verification and 

Validation”
12

 from MathWorks is used to define formal 

requirements in SIMULINK and to automatically test 

and verify requirements by simulation. In the master 

thesis (Tunnat, 2011) the toolbox has been applied to 

an aircraft system. Figure 1 is an example from this 

thesis that shows the essential elements (in the thesis a 

script was implemented for the report generator of 

SIMULINK, that combines the textual description in a 

Word file with the screen shot of the formal definition 

in Stateflow): The Detector delays and/or synchronizes 

Boolean signals, the Implies block is the logical 

implies operator of Boolean algebra, and Assertion 

expects that its input is always true and triggers a 

requirements failure if this is not the case. Note, that 

requirements are defined with 2-valued logic. 

                                                 
7 SysML: http://www.omgsysml.org 
8 DOORS: http://www-03.ibm.com/software/products/en/ratidoor 
9 Reqtify: http://www.3ds.com/products-

services/catia/capabilities/requirements-engineering/reqtify/ 
10 OSRMT: http://sourceforge.net/projects/osrmt/ 
11 formalmind studio: http://formalmind.com/studio 
12 SIMULINK toolbox “Verification and Validation“: 

http://www.mathworks.com/products/simverification 

 

Figure 1. An example of a requirement definition with 

the SIMULINK toolbox “Verification and Validation”. 

Text and figure from (Tunnat, 2011).  

1.3 Modelica_Requirements Prerequisites 

In two recent ITEA projects, EUROSYSLIB
13

 and 

OPENPROD
14

, part of the research was devoted to 

how to model requirements in Modelica. The 

EUROSYSLIB results are reported in (Jardin et al., 

2011) and resulted in conceptual work and a prototype 

Modelica library. The OPENPROD results are partially 

reported in (Schamai, 2013). 

In the ITEA MODRIO
15

 project, EDF developed a 

complete concept for a central industrial scenario: First 

defining the requirements for a system, then 

performing an architectural design that shall comply 

with the requirements and finally evaluating and fine-

tuning the architectural design with behavioral models 

(Bouskela et al., 2015). Furthermore, EDF developed 

the special language FORM-L (Thuy, 2014) to 

describe requirements in a formal way but close to the 

(textual) notation used by system designers. EDF 

evaluated and refined the language on a larger 

benchmark example (Thuy, 2013). In (Garro et al., 

2014) it was systematically evaluated how to map 

FORM-L language elements and ideas to Modelica. 

The above work, including new investigations of 

Dassault Aviation, finally resulted in the 

Modelica_Requirements library described in the 

following sections. 

2 Modelica_Requirements Library 

The top-level view of this library is shown in Figure 2. 

The library has about 200 model and block 

components and about 50 functions. It is provided 

under the Modelica License 2, and can therefore be 

used in commercial applications without essential 

restrictions. The most important sub-libraries are 

discussed in the following sub-sections. 

                                                 
13 EUROSYSLIB: https://itea3.org/project/eurosyslib.html 
14 OPENPROD: https://itea3.org/project/openprod.html 
15 MODRIO: https://itea3.org/project/modrio.html 

Back-up Performance 
10 seconds after the BFan is faulty or off, the BUV shall be in 

FO position and the inflow into the avionic compartment shall 

be less or equal than 1.5 KG/s and greater or equal than 1 kg/s. 
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2.1 Two- and Three-valued Logic 

Defining elements with formal logic requires defining 

an appropriate data type. All programming languages 

support two-valued logic. In Modelica, the data type 

Boolean is used for this purpose. FORM-L uses three-

valued logic. Also, several publications in this area 

suggest using three-valued logic, see for example 

(Schamai, 2013).  

Important reasons for using three-valued logic are: 

(1) In certain situations it is not possible to state 

whether a property is violated/false or satisfied/true. 

For example the FORM-L operator  
               during(condition, check)  

is defined as: “As long as the condition is true, 

check must be true”. However, what return value 

should be used, when condition is not true? (e.g. 

when the component to be checked is not “in 

operation”). This case is not defined and therefore the 

operator should neither return false nor true, but 

undefined. There are also operators where during a 

first time range, the return value of the operator is not 

defined and therefore the best meaningful value to 

return is undefined. With two-valued logic the user 

has to either return two Booleans to describe this 

situation, or somehow select a value false or true in 

such cases. The problem is that logical expressions that 

depend on such an arbitrarily selected value may make 

a required property violated or satisfied, although in 

reality it is undecided and this may either give an 

overly optimistic or an overly pessimistic view. 

(2) Simulations with requirement models should 

determine whether a required property is violated. A 

simulation may, however, not evaluate a defined 

requirement model (e.g. if only simulations are 

performed where the 

model to be checked is 

not “in operation”). With 

three-valued logic this 

situation can be 

indicated by, e.g. the 

value undecided. With 

two-valued logic it 

cannot be stated that a 

simulation did not test all 

required properties, and 

when the simulation run 

returns with “all required 

properties satisfied”, this 

might be too optimistic 

or simply wrong. 

Three-valued logic has 

the following drawbacks: 

(1) There are several 

types of three-valued 

logic definitions, such as 

Kleene's, Lukasiewicz's, 

Bochvar's and other logics (Lukasiewicz, 1920; 

Bochvar, 1937; Breuer, 1972; Rescher, 1969). Some 

operators, like “or” and “and” are identical in the 

different schemes, but the implies(a,b) operator is 

not. For an user it is not obvious which three-valued 

logic is used in a system and what the consequences 

are. 

(2) Modelica has already many operators and 

functions for two-valued logic and also users will have 

many models utilizing two-valued logic. If three-

valued logic alone were to be used for requirements 

modeling, then a large amount of existing code could 

not be reused. 

It is clear that two-valued logic must be supported in 

order to use existing code and to support the well-

known view of the user on logical expressions, as well 

as language elements such as if/else or while. On 

the other hand, two-valued logic alone has 

disadvantages for requirements modeling as sketched 

above. For these reasons, in the Modelica_-

Requirements library two-valued logic, as well as a 

restricted form of three-valued logic is used. The three-

valued logic is defined by enumeration Property (in 

sub-library Types): 

type Property = enumeration(Violated, 
                            Undecided, 
                            Satisfied); 

Only functions and blocks with three-valued logic 

input and/or output arguments are used where the 

semantics can be defined mathematically in a uniquely 

accepted way that is also natural and obvious for the 

user. For example, the function 

               during(condition, check) 

is provided with Boolean input arguments 

condition and check, and a Property return value. 

On the other hand, a function implies(..) with 

three-valued logic input/output arguments is not 

provided because different types of three-valued logics 

are in use and the result value is not obvious for a user. 

Also cast functions from Boolean and Integer to 

Property and from Property to Boolean and 

Integer are provided. The mapping from Property 

to Boolean is not unique, because it is not obvious 

how to map the value “Undecided” to a Boolean. 

This issue is resolved by requiring users to specify the 

mapping with a second input argument: 

  Property p = …; 
  Boolean  b; 
equation  
  b = PropertyToBoolean(p,undecided=true); 

To simplify the view for the user, most functions and 

blocks have at most one input argument and/or one 

output argument of type Property. The only 

exceptions are the 3-valued blocks to model the or, 

and, not operators in 3-valued logic, for which a 

 

Figure 2. Modelica_-

Requirements library. 
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commonly accepted unique definition exists. For 

example, the LogicalBlocks.PropertyOr block is 

defined as (in the next figure, three connection lines 

have been drawn to instance “or1”): 

input  Property u[:]; 
output Property y; 

where y = u[1] or u[2] or u[3]  or  …, and using the truth-

table (here for two inputs): 

u[1] or u[2] Violated Undecided Satisfied 

Violated Violated Undecided Satisfied 

Undecided Undecided Undecided Satisfied 

Satisfied Satisfied Satisfied Satisfied 

2.2 Graphical Layout 

It is expected that the Modelia_Requirements library is 

utilized by users, such as system architects, without 

requiring that they be simulation specialists. For this 

reason an effort was made to improve the usual 

graphical appearance of models/blocks (within the 

limitations of Modelica). The following principles are 

used: 

(1) All entries of a parameter menu are displayed in 

the icon, in order that it not be necessary to inspect 

the menu to understand the parameterization (as a 

consequence, a menu, and therefore a block, must 

be simple and can have at most 3 or 4 input fields). 

(2) All such menu entries are defined as “input fields” 

to make visually clear that the user can provide 

values (see examples below). 

(3) The instance name is displayed above the icon, but 

in light grey, in order that it not disturbs the layout 

too much. One could remove the instance name 

completely from the icon, but it is then no longer 

so easy to select plot variables by name. 

Here are some examples: 

ݕ ൌ ݑ ൐ ʹͳͲ 

ݕ ൌ ܾͳ ൐ ܾʹ 

y = true when off has 

been true for more than 6 

accumulated seconds 

during any 10 second 

time window. 

2.3 Definition of Required Properties 

In sub-library Verify 

blocks are present to (a) 

define that a Property or 

Boolean signal is a 

required property and (b) to print a log summary after a 

simulation (see figure). An example for the usage of 

block Requirement is shown in the next figure: 

 
Figure 3. Example on how to define a required property. 

The left hand arrow is an input signal of type 

Property. In the icon, the content of parameter text 

is displayed that should contain a textual description of 

the required property. For this, a new annotation 

“AutoLineBreak” is proposed that displays a String 

parameter in the icon with automatically selected line 

breaks (so that the text with a given font, here 8pt, is 

displayed within the surrounding box): 

  parameter String text annotation(AutoLineBreak=true); 

The Requirement block monitors its property input 

over a simulation and computes its status at the end of 

the simulation run: 

 Requirement is violated:  

Input is Violated at least once. 

 Requirement is untested:  

Input is Undecided for the complete simulation run 

 Requirement is satisfied:  

Input is Satisfied at least once, and is never 

Violated. 

Determining this status is more difficult than one 

would expect, because during event iteration a 

requirement may become temporarily violated, but at 

event restart the requirement may no longer be 

violated. To avoid false messages of this type, one has 

to determine whether a requirement is violated at event 

restart. This is achieved with the following Modelica 

code: 

when not terminal() and change(property) then 
     if not pre(atLeastOneFailure) and   

        property == Property.Violated then 
        atLeastOneFailure = true; 
        firstFailureTime  =  time; 
    elseif pre(atLeastOneFailure) and  

              time <= firstFailureTime and  
              (property==Property.Satisfied or  
              property==Property.Undecided) then 
       atLeastOneFailure =  false; 
       firstFailureTime  =  startTime - 1; 
    end if; 
end when; 

The when-clause becomes active, whenever property 

changes its value. If property became Violated the 

first time, this is marked with atLeastOneFailure = 

true. If property is changing at the current event 

iteration, determined by time <= firstFailureTime 
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(time is not changing at an event, and therefore this 

expression will be true at the same event instant), again 

a check is made whether property is no longer 

Violated. In this case, atLeastOneFailure is set 

back to false.  

The information about the instance name of the 

requirement, the requirement text and its status are 

stored on a log file in textual format. This log file could 

be processed after the simulation run for example by a 

script. Additionally, the user can drag the block 

PrintViolations to the top level of his/her model, 

see Figure 4. 

        
Figure 4. Defining requirement status log 

(left figure: icon; right figure: parameters of the block) 

This block prints a detailed summary of the status of all 

requirements to the output window. The output can be 

configured, see right side of Figure 4. Furthermore, the 

“satisfaction” factor, that is the percentage of 

requirements with status = Satisfied, are dynami-

cally displayed in the icon (see left side of Figure 4) 

and stored in the result file, to give a quick overview 

about the requirement status. 

2.4 Checks in Fixed Windows 

In sub-library ChecksIn-

FixedWindow (see figure to 

the right) blocks are present 

that determine whether a 

particular property is 

fulfilled or not in a given 

time window: Whenever the 

Boolean input condition 

is true, the property is 

checked, otherwise the 

property is not checked (and 

the output is set to 

Undecided). Properties that 

can be checked are for 

example, that input check  

 must be true for a 

minimum and/or a 

maximum duration, 

 must have a minimum 

and/or a maximum 

number of rising edges. 

For example, with block MaxRising, see Figure 5, it is 

stated that the number of rising edges of check is 

limited during every true condition phase. The left 

input arrow is condition and the lower input field is 

check = engineStart, so that at most three tries of 

engineStart (becoming true) are allowed in the 

 
Figure 5. Example for MaxRising block. 

start phase (condition = true).  

In a first design, check was not provided by an 

input field, but by an additional input connector to the 

left. In larger use cases, like the EDF Backup Power 

Supply (Thuy 2013), it turned out that the diagram 

layer of the requirement models became hard to 

understand due to the many connection lines. This 

issue could be reduced by using an input field with a 

name for the check signal instead of a connector. 

The implementation of most of the blocks in this 

sub-library is straightforward. For example, the 

MaxRising block is implemented as
16

: 

initial equation  
    countRising = 0;  // number of rising edges 
    y = if condition then Property.Satisfied  

                              else Property.Undecided; 
equation  
    when condition then 
        countRising = 0;  y = Property.Satisfied; 
    elsewhen condition and check then 
        countRising = pre(countRising) + 1; 
        y = if countRising <= nRisingMax then  

                  Property.Satisfied  else Property.Violated; 

    elsewhen not condition then 
        countRising = 0;   y = Property.Undecided; 
    end when; 

A typical simulation result is shown in the next figure: 

 
Figure 6. Simulation result for example of Figure 5. 

Note, that between 3.4s .. 3.5s the output is Violated, 

because there have been 4 rising edges of check. 

                                                 
16 Rising edges are not counted at the time instant when condition 

becomes true or when it becomes false. 
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Figure 7. Example for WithinDomain block 

(left figure: point is within the domain, 

right figure: point is outside the domain) 

WithinDomain is a more complicated block, see left 

part of Figure 7. This block defines a domain with a 

polygon and the requirement is that the input point (a 

vector of size 2 defining the x- and y-coordinate of the 

point) must be within this domain. For example, in a 

passenger aircraft the “time to complete a cabin 

pressure change” (x-coordinate) and the “cabin 

altitude rate of change” (y-coordinate) must be within 

a given 2-dimensional domain that can be described by 

the WithinDomain block.  

The actual polygon is displayed in the icon, together 

with the point (= green circle) and the nearest distance 

of the point to the polygon. After a simulation run, a 

diagram animation shows the actual status. In the right 

part of Figure 7 the point is outside of the polygon and 

then the domain and the point is displayed in red. 

Output y is  

 Undecided if condition = false, 

 Satisfied if condition = true and the 

point is within the polygon and  

 otherwise it is Violated. 

Displaying the polygon, the point and the distance in 

the icon is performed with the standard Modelica 

annotation DynamicSelect(..) that allows an element 

in an icon to be displayed dynamically. Determining 

the distance of a point to a polygon is a standard task in 

computer graphics. In the block a pure Modelica 

implementation is used. The relationships of one line 

of the polygon are displayed in Figure 8: 

 
Figure 8. Relationships between one polygon line 1→2, 

point P and the closest distance d of P to this line. 

The corresponding equations are: ࢘ͳʹ 	 ൌ ʹ࢘ െ ݌ͳ࢘ͳ࢘ ൌ ݌࢘ െ ݀࢘ͳ࢘ ൌ ͳ࢘ ൅ ߣ ∙  ʹͳ࢘
(1) 

The cosine ߮ of the angle between vectors ࢘ଵଶ and ࢘ଵ௣ 

can be either computed with the relationships in a 

triangle, or with the dot-product, where ߣ with  Ͳ ൑ ߣ ൑ ͳ characterizes the point ࢘ௗ on the line with 

the shortest distance to P: cos ߮ ൌ ߣ ∙ ห݌ͳ࢘ͳʹ|ห࢘| ൌ ʹͳ࢘ ∙ |ʹͳ࢘|݌ͳ࢘ ∙ ห࢘ͳ݌ห  (2) 

and therefore ߣ ൌ max ൬min ൬࢘ͳʹ ∙ ʹͳ࢘݌ͳ࢘ ∙ ʹͳ࢘ , ͳ൰ , Ͳ൰ ݀ ൌ ห࢘ͳ݌ െ ߣ ∙  ͳʹห࢘ (3) 

Equations (3) are applied on every segment of the 

polygon, and the smallest distance d to all of the 

segments is selected. Another algorithm computes 

whether point P is within or outside of the polygon and 

d is set to a negative value if P is outside of the 

polygon. 

2.5 Time Locators 

The condition inputs of the blocks from sub-library 

ChecksInFixedWindow are Booleans that may 

originate from quite different 

sources. Due to the importance of 

these conditions, sub-library 

TimeLocators provides often 

occurring continuous-time locators, 

that are temporal operators to 

define the condition interval of 

interest (see figure to the right). 

The outputs of these blocks are 

Booleans that can be used directly as condition inputs 

to the blocks of ChecksInFixedWindow. FORM-L 

(Thuy, 2014) has also more complex type of time 

locators. It is planned to support them as well. 

Modelica does not have an “Event” data type. 

Instead, rising or falling edges of Boolean variables are 

used to define a time instant of interest that might be 

described in other modeling systems by an “Event”. 

The following blocks of sub-library TimeLocators are 

currently available: 

 Every: Output is true during every interval for a 

defined duration. 

 Until: Output is true until first rising edge of 

input. 

 After: Output is true after first rising edge of 

input. 

 AfterFor: Output is true after rising edge of input 

for a defined duration. 

 AfterUntil: Output is true, after rising edge of 

input 1 until the rising edge of input 2 

The implementation of these blocks is straightforward. 

In Figure 9 an example from (Thuy, 2013) is shown 

using block AfterUntil. This example concerns the 

generator of a Backup Power Supply system:  
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Figure 9. Example for block AfterUntil. 

The generator can signal several events (= rising edges 

of Boolean signals), including eStart (it has started) 

and eStop (it has stopped). Therefore, Figure 9 defines 

the time periods where the generator is running. For 

these time periods required properties might be defined 

with blocks from sub-library ChecksInFixed-
Window.  

The AfterUntil block is implemented as: 

  input Boolean u1 "Boolean input 1 (after)"; 
  input Boolean u2 "Boolean input 2 (until)"; 
  output Boolean y  "= true, after rising edge of u1 

                                             until rising edge of u2"; 
initial equation  
  y = u1; 
equation  
  when u1 then 
      y = true; 
  elsewhen u2 then 
      y = false; 
  end when; 

A simulation result is shown in Figure 10: The 

generator is running (afterUntil.y = true) 

between two rising edges of eStart and eStop. 

2.6 Checks in Sliding Windows 

In sub-library Checks-
InSlidingWindow 

(see figure to the right) 

blocks are present that 

determine whether a 

particular property is 

fulfilled or not in a 

sliding time window. 

For example, if a 

sliding time window 

has size T and t is the 

actual time instant, then 

in every time range ሾݐ െ ܶ,  ሿ the propertyݐ

must be fulfilled.  

Evaluating a 

property in a sliding 

time window requires 

storing the values of 

the relevant signals in a 

buffer that covers 

“essential” signal 

values in the past at least up to time t - T, and operating 

on this buffer. For Boolean signals a buffer has been  

 
Figure 10. Simulation result for example of Figure 9. 

designed which is available as Internal.Sliding-

Window (see the figure on the right). This is a package 

consisting of a record 

Buffer in which past 

values are stored and a set 

of functions operating on 

this record. The current 

implementation is a pure 

Modelica implementation 

to gain experience and 

figure out the right 

function interfaces. Since a 

“memory” is needed that is 

passed between Modelica 

functions, the size of this 

memory must be fixed at 

compilation time and the 

complete buffer must 

always be copied, once an 

element in this buffer is 

changed. It is planned to 

replace this implementation by a C-implementation 

with a Modelica ExternalObject to get rid of these 

restrictions. 

The SlidingWindow buffer package is basically a 

queue where elements with a time stamp t are inserted 

at the top and elements with a time stamp older then t-

T are removed at the bottom. The memory of the queue 

is defined as (where nBuffer=20 is a defined 

constant): 

record Buffer "Memory of sliding window" 
   Modelica.SIunits.Time T "Length of sliding time win."; 
   Modelica.SIunits.Time t0 "Time instant where sliding  

                                               time window starts"; 
   Modelica.SIunits.Time t[nBuffer] "Time instants"; 
   Boolean b[nBuffer] "Values at corresp. time instants"; 
   Integer first              "Index of first element in buffer"; 
   Integer last               "Index of last element in buffer"; 
   Integer nElem           "Number of elements in the buffer"; 
end Buffer; 
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Some of the functions operating on this buffer are 

sketched at hand of block MinAccumulated-

Duration2, see Figure 11.  

 
Figure 11. Example for MinAccumulatedDuration2 

This example models the following requirement from 

(Thuy, 2013):  

When the MPS (Main Power Supply system) is 

switched off, signaled by Boolean Off, then the MPS 

must be declared Unavailable when it has been off 

for more than 6 accumulated seconds during any 10 

seconds time window.  

This is achieved in the following way: Component 

minAccumulatedDuration2 outputs true, if in any 

time window of length 10 s variable Off was 

accumulated true for at least 6 s. This signal is the 

input to component during which requires that 

whenever the input is true, variable Unavailable 

must be true as well. In that case the block outputs 

Satisfied. If the input of during is true and 

Unavailable = false, the requirement is clearly 

violated and the during block outputs Violated (if 

the input is false, the block outputs Undecided). 

Block MinAccumulatedDuration outputs a 

Property whereas MinAccumulatedDuration2 

outputs a Boolean. The difference is only during the 

initial phase ݐ ൏ ଴ݐ ൅ ܶ where the first block returns 

Undecided if the property is violated, and the second 

returns false. The MinAccumulatedDuration2 

block is implemented in the following way 

  import Modelica_Requirements.Internal.SlidingWindow.*; 

   parameter Modelica.SIunits.Time window; 
   parameter Modelica.SIunits.Time lowerLimit; 
   input Boolean check(start = false); 
   output Boolean y "= true if property satisfied"; 
   output Real accDuration; 

protected  
   Buffer buffer "Buffer for sliding window"; 

 
initial equation  
   buffer = push(init(T,time), time, check); 
   pre(check) = check; 

 
equation  
   when change(check) then 
      buffer = push(pre(buffer), time, check); 
   end when; 
   accDuration = accumulatedDuration(buffer, time, check); 
   y = accDuration >= lowerLimit; 

The Buffer functions have the following tasks: 

 init(T,time) returns an instance of Buffer and 

initializes it with the length of the sliding time 

window T and the initial time instant time t. 

 push(init(T,time), time, check) 

generates and initializes a Buffer and stores one 

element (= the initial time instant and the value of 

check) in the buffer. At the same time, this call 

removes values from the buffer that have a time 

stamp older then time - T. The function returns a 

copy of the buffer. 

 The code 
     when change(check) then 

         buffer = push(pre(buffer), time, check); 

     end when;  
is executed whenever check changes its value (and 

at that time instant an event occurs). The function 

call stores the actual time instant and the value of 

check in the buffer from the last event instant and 

removes older values from the buffer. The updated 

buffer is then returned at the actual event instant. 

 The code 
    accDuration = accumulatedDuration(buffer, time, check); 

is executed during continuous-time integration, 

that is whenever the integrator requires a model 

evaluation. The function call accumulatedDuration(..) 

computes the accumulated time duration where the 

values of check in the buffer have been true during 

the time window time – T and returns this value. The 

third argument check of this function call is usually 

ignored, but is used if the buffer is empty. 

 The code 
      y = accDuration >= lowerLimit; 

triggers a state event when the accumulated time 

duration crosses its limit and y changes its value 

from false to true or from true to false 

depending on the crossing direction. 

2.7 Utility Functions and Blocks 

Besides of the already discussed core blocks, the 

Modelica_Requirements libray has also quite a lot of 

utility functions and blocks that might be useful to 

formally define a requirement: 

Sub-library SignalAnalysis consists of blocks to 

compute exact or approximate derivatives, an 

integrator that can be controlled by a trigger signal, a 

moving average filter, and other blocks. 

Sub-library LogicalBlocks provides blocks to 

convert between Boolean, Integer and Property signals, 

comparing Real signals as well as logical operators 

(not, or, and) on Property signals. Some of these 

blocks are also available in the Modelica Standard 

Library. However, since they seemed to be often 

needed for requirements modeling, they have been 

provided additionally with the graphical layout used 

for the Modelica_Requirement blocks. 

When textually modeling or when implementing 

blocks, a set of useful functions for 2- and 3-valued 
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logic have been collected in sub-library 

LogicalFunctions. Some of these functions are 

motivated by the FORM-L language and provide set-

like functionality on Modelica vectors. For example 

function exist(..) has a Boolean input vector and 

returns true if at least one element of this vector is true. 

In combination with Modelica’s reduction expressions, 

quite powerful compact formulations are possible, as 

shown in the next example: 

  // Define a set of pumps 
  Pump pumps[3] = {Pump(isActive=time < 1 or  

                                                           time > 2 and time < 3), 
                                Pump(isActive=time < 0.5 or    time > 2.5), 
                                Pump(isActive=time > 1.5 and time < 1.9)}; 
 

  // At least one pump must be active all the time 
  Boolean atleastOnePumpActive = 

                                             exists({p.isActive for p in pumps})  

Sub-library Examples contains a large set of examples 

to demonstrate and assess the components of the 

library. Every component of the library is present in at 

least in one example (so class coverage is 100 %). 

There is also a growing set of application specific 

examples that can be used as templates in actual 

projects. For example, sublibrary Modelica_Require-

ments.Examples.AircraftRequirements contains 

typical requirement definitions used in aircraft systems: 

 

Figure 12. Sub-library of aircraft specific requirements 

from Dassault Aviation. 

Every example contains a short definition of the 

requirement (as it is typically present in design 

documents), the corresponding Modelica model to 

verify the requirement together with some simple test 

signals. For example, the requirement “In the cabin 

area, the temperature increase should not exceed 3°C 

per hour.” is verified with the following model (the 

input is cabin temperature as function of time defined 

in a table): 

 

Figure 13. An aircraft requirement to assess the limited 

allowed temperature increase in the cabin area. 

3 Textual Definition of Requirements 

In the previous examples requirements have been 

defined graphically. Some users prefer, however, a 

pure textual definition because requirements can be 

formulated and inspected in a more compact form. It 

turned out that with current Modelica it is not possible 

to define requirements in a convenient way, if the 

requirement model contains a memory. For this reason, 

section 3.1 sketches a proposal for a Modelica 

extension to improve this situation.  

3.1 Calling Blocks as Functions 

The goal is to introduce functions with memory and 

events into Modelica. Since blocks already support 

memories and events, the simplest extension seems to 

be to introduce the feature that blocks can be called as 

functions. However, functions have a different type 

system than blocks: Arguments in functions can be 

identified by position, whereas in blocks they must be 

identified by name. For this reason, the “function 

calling” mechanism of a block is naturally restricted to 

named arguments. Since functions have an optional 

mechanism for named input arguments, but not for 

named output arguments, functions are generalized for 

named output arguments first. Afterwards, the optional 

calling mechanism of functions and the required 

calling mechanism of blocks are identical. 

The basic idea is simple: (a) A block is called using 

its class name, (b) the inputs to the block call are 

defined by the usual modifiers of a block declaration, 

(c) one output of a block must be defined as return 

value of the call, by appending its name with “.name” 

to the “function call”. Take for example the block 

MaxRising of Figure 5. It could be expressed as a 

declaration in a pure textual form: 

  import Modelica_Requirements.ChecksInFixedWindow.*; 
  import Modelica_Requirements.Types.Property; 
 

  Property property = MaxRising(condition = start, 
                                                     check = engineStart, 
                                                     nRisingMax = 3).y; 

Note, (…).y defines that output variably y of block 

Modelica_Requirements.ChecksInFixedWindow.MaxRising is 

computed and assigned to variable property. The above 

declaration is transformed (conceptually) to standard 

Modelica with a formal mapping rule resulting in: 
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  MaxRising MaxRising_1(condition = start, 
                                            check = engineStart, 
                                            nRisingMax = 3); 
  Property property = MaxRising_1.y; 

This shows that a tool has to introduce a declaration for 

an auxiliary component (here: MaxRising_1) and use the 

output of this block (here: MaxRising_1.y) in the 

expression where the call of MaxRising occurred. 

The block calling can be nested in expressions. 

However, in order that the simple mapping rule above 

can be applied by a tool, several restrictions are 

necessary. Most importantly: A block can be called as 

a function only in the declaration section (with the 

additional restriction that it cannot be called in an if-

expression). The proposed extension above was 

implemented in prototypes of Dymola and 

OpenModelica (Buffoni and Fritzson, 2014) 

3.2 Examples 

In the Modelica_Requirements library several textual 

examples are present in sub-library Examples.Textual, 

especially part of the EDF Backup Power Supply 

benchmark (Thuy, 2013). Example code: 

Requirement R1(property=WhenRising(condition=Off,  

                                               check=MPSVoltage < 170).y,  
                            text="MPS CAN be declared Off when  

                                      the voltage gets below 170 V"); 

Requirement R2(property=during(MPSVoltage < 160,  

                                                       check=Off),  
                            text="MPS MUST be declared Off when  

                                      the voltage gets below 160 V"); 

It is a matter of taste whether a user prefers a graphical 

or a textual definition – the Modelica_Requirements 

library supports both choices. 

4 Utilizing Requirement Models 

Once requirements are defined they are typically 

associated with behavioral models and various 

techniques are used to verify these requirements based 

on simulations. Integrating the modelled requirements 

manually in test scenarios of behavioral models may be 

a tedious task and there is a clear need to automate this 

process. Several proposals have been discussed within 

the MODRIO project for this purpose, especially 

(Bouskela et al., 2015; Schamai, 2013; Schamai et al., 

2014) and also on using Modelica scripts for 

associating requirements with behavioral models. In 

(Elmqvist et.al, 2015) two new Modelica language 

constructs are proposed to simplify this “automatic 

binding” task. These language elements are also useful 

for other applications, for example to compute the total 

mass of a multibody system or for contact handling.  

The current development stage allows to check in 

every simulation run whether the defined requirements 

are satisfied or violated (or are not tested). Industrial 

applications would typically involve additional 

software on top of this base functionality, such as: 

 Monte Carlo Simulation  

Various initial conditions, operating points, and/or 

external disturbances are randomly generated 

within meaningful bounds and for every scenario 

simulations are performed. This brute force 

method for evaluation of dynamic systems is 

standard in many software tools. 

 TestWeaver 

TestWeaver (Junghanns et al., 2008) is a software 

tool from QTronic to construct automatically test 

scenarios, especially also for Modelica models. 

The goal of the tests is to drive the system in a 

state where it violates its specifications. A major 

application area are systems where the inputs have 

a countable number of values or areas (and these 

values vary over time). 

 Anti-Optimization 

A technique used at DLR-SR to evaluate controller 

designs, see e.g. (Joos, 2011): A special parameter 

optimization problem is formulated, in order to 

find an operating point of the system (e.g. height 

or speed of an aircraft), where the controller works 

as badly as possible. The major application area 

are systems where the operating region and the 

requirements are described by continuous signals. 

5 Conclusions and Outlook 

In this article the design of a new, open source 

Modelica library was presented to formally model 

requirements for industrial applications. The design 

was driven by applications of EDF (power plants, 

electrical systems) and Dassault Aviation (aircrafts). 

The basic design is based on the FOrmal Requirements 

Modeling Language FORM-L from (Thuy, 2014). The 

library in the current form (July 2015) is in an Alpha 

version. It is planned to additionally implement 

FORM-L components with overlapping sliding time 

windows, to include dynamic response and FFT 

requirement blocks from (Kuhn et al., 2015), to 

introduce continuous indicators for the properties 

where this is possible (in order that property blocks can 

be directly used as constraints or criteria for 

optimization-based methods), to add use cases of EDF 

and Dassault Aviation, and to connect the library to 

existing verification frameworks, such as TestWeaver. 
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