
Formal Requirements Modeling for Simulation-Based Verification

Martin Otter1, Nguyen Thuy2, Daniel Bouskela2, Lena Buffoni3, Hilding Elmqvist4,

Peter Fritzson3, Alfredo Garro5, Audrey Jardin2, Hans Olsson4, Maxime Payelleville6,

Wladimir Schamai7, Eric Thomas6, Andrea Tundis5

1Institute of System Dynamics and Control, DLR, Germany, Martin.Otter@dlr.de
2EDF, France, {Daniel.Bouskela,Audrey.Jardin,N.Thuy}@edf.fr

3PELAB, Linköping University, Sweden, {Lena.Buffoni, Peter.Fritzson}@liu.se
4Dassault Systèmes AB, Sweden, {Hilding.Elmqvist, Hans.Olsson}@3ds.com

5DIMES, University of Calabria, Italy, {Alfredo.Garro, Andrea.Tundis}@unical.it
6Dassault Aviation, France, {Eric.Thomas, MP}@dassault-aviation.com

7Airbus Group Innovations, Germany, Wladimir.Schamai@airbus.com

Abstract

This paper describes a proposal on how to model

formal requirements in Modelica for simulation-based

verification. The approach is implemented in the open

source Modelica_Requirements library. It requires

extensions to the Modelica language, that have been

prototypically implemented in the Dymola and Open-

Modelica software. The design of the library is based

on the FOrmal Requirement Modeling Language

(FORM-L) defined by EDF, and on industrial use cases

from EDF and Dassault Aviation. It uses 2- and 3-

valued temporal logic to describe requirements.

Keywords: requirements, verification, physical

systems, 3-valued logic, temporal logic.

1 Introduction
1

1.1 Overview

To ensure the proper operation of complex physical

systems such as power plants, aircraft or vehicles,

requirements are issued all along the system’s

lifecycle: from the preliminary design phase to the

operation phase. Typically, the requirements capture

the spatiotemporal and quality of service conditions

that a system should fulfill. They may be quite

complex and numerous. Testing the compliance of the

system with the requirements may be quite

challenging, due to the many items that should be

examined and verified for a given test scenario, and the

number of test scenarios to be considered to have a

satisfying verification coverage.

This paper tries to improve the current situation, by

(a) providing the open source library Modelica_-

Requirements to define and model requirements in a

formal way using 2- and 3-valued linear temporal logic

(LTL); (b) associating requirement models with

behavioral models; (c) testing whether the defined

1 This section uses material from the internal reports (Bouskela et al.

2015) and (Otter et al., 2014).

requirements are violated by the system design

currently studied when the underlying behavioral

models are simulated. This approach requires

extensions to Modelica, that have been prototypically

implemented in Dymola (Dassault Systèmes, 2015)

and in OpenModelica (Open Source Modelica

Consortium, 2015). The library has been tested and can

be used by both of these Modelica simulation

environments.

The main purpose of this approach is to check

formally defined requirements by simulation. It is not

intended to perform formal model verification by

model checkers as done by tools such as NuSMV
2
,

SPIN
3
, Prover Plug-in

4
 for discrete systems or

SpaceEx
5
, KeYmaera

6
 for hybrid systems. For

example, a differential-algebraic equation system may

be solved numerically to compute a pressure p in a

pipe, and the requirement is formulated as p ≥ pcavitate.

Model checkers for discrete systems cannot be used in

this case, and verification tools for hybrid systems can

only handle simple sets of differential and discrete

equations, but not large models of industrial

applications like power plants or aircraft.

1.2 State-of-the-art to Define Requirements

The standard in industrial applications is still to define

requirements in natural language in textual form. As a

typical example see the requirements for electrical

systems in US military aircraft MIL-STD-704F

(Department of Defense, 1984). Such specifications are

defined in reports by using for example Microsoft

Word, or with dedicated tool support. The latter

especially to get support for collaboration, traceability,

coverage analysis of textually defined requirements.

Moreover, visual modeling languages for system

2 NuSMV: http://nusmv.fbk.eu/
3 SPIN: http://spinroot.com/spin/whatispin.html
4 Prover Plug-in: http://www.prover.com/products/prover_plugin/
5 SpaceEx: http://spaceex.imag.fr/
6 KeYmaera: http://symbolaris.com/info/KeYmaera.html

DOI
10.3384/ecp15118625

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

625

engineering are very common, such as SysML
7
, a

general-purpose modeling language for systems

engineering applications, that defines requirement and

parametric diagrams for supporting the modeling of

system properties. In particular, requirement diagrams

provide constructs and mechanisms to express and

compose system requirements, as well as to allocate

them to system components; parametric diagrams can

be used for supporting performance analysis and

quantitative assessment. There are a number of tools in

this area, for example: Rational DOORS from IBM
8
,

Reqtify from Dassault Systèmes
9
, OSRMT (GPL2)

10
,

formalmind Studio (free)
11

. The most important xml-

based exchange format seems to be ReqIF (OMG,

2013).

Defining and processing requirements formally is an

area of active research. The exploited mathematics uses

propositional logic, temporal logic, set theory and

others; see for example (Baier and Katoen, 2008;

Lamport, 2015). There are many publications, but the

pure mathematical notation is quite far away from a

language an engineering practitioner would be able to

use.

For electronic circuit design, there is a proposal for

an Analog Specification Language (ASL) by

(Steinhorst and Hedrich, 2009), with a detailed

proposal of language elements and some examples. In

(Schamai, 2013) the idea for formalizing a natural-

language requirement into a requirement violation

monitor is presented. In runtime verification, monitors

are expressed in some variant of linear temporal logic

expressions and to generate efficient code for the actual

monitors (Leucker and Schallhart, 2009).

The SIMULINK toolbox “Verification and

Validation”
12

 from MathWorks is used to define formal

requirements in SIMULINK and to automatically test

and verify requirements by simulation. In the master

thesis (Tunnat, 2011) the toolbox has been applied to

an aircraft system. Figure 1 is an example from this

thesis that shows the essential elements (in the thesis a

script was implemented for the report generator of

SIMULINK, that combines the textual description in a

Word file with the screen shot of the formal definition

in Stateflow): The Detector delays and/or synchronizes

Boolean signals, the Implies block is the logical

implies operator of Boolean algebra, and Assertion

expects that its input is always true and triggers a

requirements failure if this is not the case. Note, that

requirements are defined with 2-valued logic.

7 SysML: http://www.omgsysml.org
8 DOORS: http://www-03.ibm.com/software/products/en/ratidoor
9 Reqtify: http://www.3ds.com/products-

services/catia/capabilities/requirements-engineering/reqtify/
10 OSRMT: http://sourceforge.net/projects/osrmt/
11 formalmind studio: http://formalmind.com/studio
12 SIMULINK toolbox “Verification and Validation“:

http://www.mathworks.com/products/simverification

Figure 1. An example of a requirement definition with

the SIMULINK toolbox “Verification and Validation”.

Text and figure from (Tunnat, 2011).

1.3 Modelica_Requirements Prerequisites

In two recent ITEA projects, EUROSYSLIB
13

 and

OPENPROD
14

, part of the research was devoted to

how to model requirements in Modelica. The

EUROSYSLIB results are reported in (Jardin et al.,

2011) and resulted in conceptual work and a prototype

Modelica library. The OPENPROD results are partially

reported in (Schamai, 2013).

In the ITEA MODRIO
15

 project, EDF developed a

complete concept for a central industrial scenario: First

defining the requirements for a system, then

performing an architectural design that shall comply

with the requirements and finally evaluating and fine-

tuning the architectural design with behavioral models

(Bouskela et al., 2015). Furthermore, EDF developed

the special language FORM-L (Thuy, 2014) to

describe requirements in a formal way but close to the

(textual) notation used by system designers. EDF

evaluated and refined the language on a larger

benchmark example (Thuy, 2013). In (Garro et al.,

2014) it was systematically evaluated how to map

FORM-L language elements and ideas to Modelica.

The above work, including new investigations of

Dassault Aviation, finally resulted in the

Modelica_Requirements library described in the

following sections.

2 Modelica_Requirements Library

The top-level view of this library is shown in Figure 2.

The library has about 200 model and block

components and about 50 functions. It is provided

under the Modelica License 2, and can therefore be

used in commercial applications without essential

restrictions. The most important sub-libraries are

discussed in the following sub-sections.

13 EUROSYSLIB: https://itea3.org/project/eurosyslib.html
14 OPENPROD: https://itea3.org/project/openprod.html
15 MODRIO: https://itea3.org/project/modrio.html

Back-up Performance
10 seconds after the BFan is faulty or off, the BUV shall be in

FO position and the inflow into the avionic compartment shall

be less or equal than 1.5 KG/s and greater or equal than 1 kg/s.

Formal Requirements Modeling for Simulation-Based Verification

626 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118625

2.1 Two- and Three-valued Logic

Defining elements with formal logic requires defining

an appropriate data type. All programming languages

support two-valued logic. In Modelica, the data type

Boolean is used for this purpose. FORM-L uses three-

valued logic. Also, several publications in this area

suggest using three-valued logic, see for example

(Schamai, 2013).

Important reasons for using three-valued logic are:

(1) In certain situations it is not possible to state

whether a property is violated/false or satisfied/true.

For example the FORM-L operator
 during(condition, check)

is defined as: “As long as the condition is true,

check must be true”. However, what return value

should be used, when condition is not true? (e.g.

when the component to be checked is not “in

operation”). This case is not defined and therefore the

operator should neither return false nor true, but

undefined. There are also operators where during a

first time range, the return value of the operator is not

defined and therefore the best meaningful value to

return is undefined. With two-valued logic the user

has to either return two Booleans to describe this

situation, or somehow select a value false or true in

such cases. The problem is that logical expressions that

depend on such an arbitrarily selected value may make

a required property violated or satisfied, although in

reality it is undecided and this may either give an

overly optimistic or an overly pessimistic view.

(2) Simulations with requirement models should

determine whether a required property is violated. A

simulation may, however, not evaluate a defined

requirement model (e.g. if only simulations are

performed where the

model to be checked is

not “in operation”). With

three-valued logic this

situation can be

indicated by, e.g. the

value undecided. With

two-valued logic it

cannot be stated that a

simulation did not test all

required properties, and

when the simulation run

returns with “all required

properties satisfied”, this

might be too optimistic

or simply wrong.

Three-valued logic has

the following drawbacks:

(1) There are several

types of three-valued

logic definitions, such as

Kleene's, Lukasiewicz's,

Bochvar's and other logics (Lukasiewicz, 1920;

Bochvar, 1937; Breuer, 1972; Rescher, 1969). Some

operators, like “or” and “and” are identical in the

different schemes, but the implies(a,b) operator is

not. For an user it is not obvious which three-valued

logic is used in a system and what the consequences

are.

(2) Modelica has already many operators and

functions for two-valued logic and also users will have

many models utilizing two-valued logic. If three-

valued logic alone were to be used for requirements

modeling, then a large amount of existing code could

not be reused.

It is clear that two-valued logic must be supported in

order to use existing code and to support the well-

known view of the user on logical expressions, as well

as language elements such as if/else or while. On

the other hand, two-valued logic alone has

disadvantages for requirements modeling as sketched

above. For these reasons, in the Modelica_-

Requirements library two-valued logic, as well as a

restricted form of three-valued logic is used. The three-

valued logic is defined by enumeration Property (in

sub-library Types):

type Property = enumeration(Violated,
 Undecided,
 Satisfied);

Only functions and blocks with three-valued logic

input and/or output arguments are used where the

semantics can be defined mathematically in a uniquely

accepted way that is also natural and obvious for the

user. For example, the function

 during(condition, check)

is provided with Boolean input arguments

condition and check, and a Property return value.

On the other hand, a function implies(..) with

three-valued logic input/output arguments is not

provided because different types of three-valued logics

are in use and the result value is not obvious for a user.

Also cast functions from Boolean and Integer to

Property and from Property to Boolean and

Integer are provided. The mapping from Property

to Boolean is not unique, because it is not obvious

how to map the value “Undecided” to a Boolean.

This issue is resolved by requiring users to specify the

mapping with a second input argument:

 Property p = …;
 Boolean b;
equation
 b = PropertyToBoolean(p,undecided=true);

To simplify the view for the user, most functions and

blocks have at most one input argument and/or one

output argument of type Property. The only

exceptions are the 3-valued blocks to model the or,

and, not operators in 3-valued logic, for which a

Figure 2. Modelica_-

Requirements library.

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118625

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

627

commonly accepted unique definition exists. For

example, the LogicalBlocks.PropertyOr block is

defined as (in the next figure, three connection lines

have been drawn to instance “or1”):

input Property u[:];
output Property y;

where y = u[1] or u[2] or u[3] or …, and using the truth-

table (here for two inputs):

u[1] or u[2] Violated Undecided Satisfied

Violated Violated Undecided Satisfied

Undecided Undecided Undecided Satisfied

Satisfied Satisfied Satisfied Satisfied

2.2 Graphical Layout

It is expected that the Modelia_Requirements library is

utilized by users, such as system architects, without

requiring that they be simulation specialists. For this

reason an effort was made to improve the usual

graphical appearance of models/blocks (within the

limitations of Modelica). The following principles are

used:

(1) All entries of a parameter menu are displayed in

the icon, in order that it not be necessary to inspect

the menu to understand the parameterization (as a

consequence, a menu, and therefore a block, must

be simple and can have at most 3 or 4 input fields).

(2) All such menu entries are defined as “input fields”

to make visually clear that the user can provide

values (see examples below).

(3) The instance name is displayed above the icon, but

in light grey, in order that it not disturbs the layout

too much. One could remove the instance name

completely from the icon, but it is then no longer

so easy to select plot variables by name.

Here are some examples:

ݕ ൌ ݑ ൐ ʹͳͲ

ݕ ൌ ܾͳ ൐ ܾʹ

y = true when off has

been true for more than 6

accumulated seconds

during any 10 second

time window.

2.3 Definition of Required Properties

In sub-library Verify

blocks are present to (a)

define that a Property or

Boolean signal is a

required property and (b) to print a log summary after a

simulation (see figure). An example for the usage of

block Requirement is shown in the next figure:

Figure 3. Example on how to define a required property.

The left hand arrow is an input signal of type

Property. In the icon, the content of parameter text

is displayed that should contain a textual description of

the required property. For this, a new annotation

“AutoLineBreak” is proposed that displays a String

parameter in the icon with automatically selected line

breaks (so that the text with a given font, here 8pt, is

displayed within the surrounding box):

 parameter String text annotation(AutoLineBreak=true);

The Requirement block monitors its property input

over a simulation and computes its status at the end of

the simulation run:

 Requirement is violated:

Input is Violated at least once.

 Requirement is untested:

Input is Undecided for the complete simulation run

 Requirement is satisfied:

Input is Satisfied at least once, and is never

Violated.

Determining this status is more difficult than one

would expect, because during event iteration a

requirement may become temporarily violated, but at

event restart the requirement may no longer be

violated. To avoid false messages of this type, one has

to determine whether a requirement is violated at event

restart. This is achieved with the following Modelica

code:

when not terminal() and change(property) then
 if not pre(atLeastOneFailure) and

 property == Property.Violated then
 atLeastOneFailure = true;
 firstFailureTime = time;
 elseif pre(atLeastOneFailure) and

 time <= firstFailureTime and
 (property==Property.Satisfied or
 property==Property.Undecided) then
 atLeastOneFailure = false;
 firstFailureTime = startTime - 1;
 end if;
end when;

The when-clause becomes active, whenever property

changes its value. If property became Violated the

first time, this is marked with atLeastOneFailure =

true. If property is changing at the current event

iteration, determined by time <= firstFailureTime

Formal Requirements Modeling for Simulation-Based Verification

628 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118625

(time is not changing at an event, and therefore this

expression will be true at the same event instant), again

a check is made whether property is no longer

Violated. In this case, atLeastOneFailure is set

back to false.

The information about the instance name of the

requirement, the requirement text and its status are

stored on a log file in textual format. This log file could

be processed after the simulation run for example by a

script. Additionally, the user can drag the block

PrintViolations to the top level of his/her model,

see Figure 4.

Figure 4. Defining requirement status log

(left figure: icon; right figure: parameters of the block)

This block prints a detailed summary of the status of all

requirements to the output window. The output can be

configured, see right side of Figure 4. Furthermore, the

“satisfaction” factor, that is the percentage of

requirements with status = Satisfied, are dynami-

cally displayed in the icon (see left side of Figure 4)

and stored in the result file, to give a quick overview

about the requirement status.

2.4 Checks in Fixed Windows

In sub-library ChecksIn-

FixedWindow (see figure to

the right) blocks are present

that determine whether a

particular property is

fulfilled or not in a given

time window: Whenever the

Boolean input condition

is true, the property is

checked, otherwise the

property is not checked (and

the output is set to

Undecided). Properties that

can be checked are for

example, that input check

 must be true for a

minimum and/or a

maximum duration,

 must have a minimum

and/or a maximum

number of rising edges.

For example, with block MaxRising, see Figure 5, it is

stated that the number of rising edges of check is

limited during every true condition phase. The left

input arrow is condition and the lower input field is

check = engineStart, so that at most three tries of

engineStart (becoming true) are allowed in the

Figure 5. Example for MaxRising block.

start phase (condition = true).

In a first design, check was not provided by an

input field, but by an additional input connector to the

left. In larger use cases, like the EDF Backup Power

Supply (Thuy 2013), it turned out that the diagram

layer of the requirement models became hard to

understand due to the many connection lines. This

issue could be reduced by using an input field with a

name for the check signal instead of a connector.

The implementation of most of the blocks in this

sub-library is straightforward. For example, the

MaxRising block is implemented as
16

:

initial equation
 countRising = 0; // number of rising edges
 y = if condition then Property.Satisfied

 else Property.Undecided;
equation
 when condition then
 countRising = 0; y = Property.Satisfied;
 elsewhen condition and check then
 countRising = pre(countRising) + 1;
 y = if countRising <= nRisingMax then

 Property.Satisfied else Property.Violated;

 elsewhen not condition then
 countRising = 0; y = Property.Undecided;
 end when;

A typical simulation result is shown in the next figure:

Figure 6. Simulation result for example of Figure 5.

Note, that between 3.4s .. 3.5s the output is Violated,

because there have been 4 rising edges of check.

16 Rising edges are not counted at the time instant when condition

becomes true or when it becomes false.

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118625

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

629

Figure 7. Example for WithinDomain block

(left figure: point is within the domain,

right figure: point is outside the domain)

WithinDomain is a more complicated block, see left

part of Figure 7. This block defines a domain with a

polygon and the requirement is that the input point (a

vector of size 2 defining the x- and y-coordinate of the

point) must be within this domain. For example, in a

passenger aircraft the “time to complete a cabin

pressure change” (x-coordinate) and the “cabin

altitude rate of change” (y-coordinate) must be within

a given 2-dimensional domain that can be described by

the WithinDomain block.

The actual polygon is displayed in the icon, together

with the point (= green circle) and the nearest distance

of the point to the polygon. After a simulation run, a

diagram animation shows the actual status. In the right

part of Figure 7 the point is outside of the polygon and

then the domain and the point is displayed in red.

Output y is

 Undecided if condition = false,

 Satisfied if condition = true and the

point is within the polygon and

 otherwise it is Violated.

Displaying the polygon, the point and the distance in

the icon is performed with the standard Modelica

annotation DynamicSelect(..) that allows an element

in an icon to be displayed dynamically. Determining

the distance of a point to a polygon is a standard task in

computer graphics. In the block a pure Modelica

implementation is used. The relationships of one line

of the polygon are displayed in Figure 8:

Figure 8. Relationships between one polygon line 1→2,

point P and the closest distance d of P to this line.

The corresponding equations are: ࢘ͳʹ 	 ൌ ʹ࢘ െ ݌ͳ࢘ͳ࢘ ൌ ݌࢘ െ ݀࢘ͳ࢘ ൌ ͳ࢘ ൅ ߣ ∙ ʹͳ࢘
(1)

The cosine ߮ of the angle between vectors ࢘ଵଶ and ࢘ଵ௣

can be either computed with the relationships in a

triangle, or with the dot-product, where ߣ with Ͳ ൑ ߣ ൑ ͳ characterizes the point ࢘ௗ on the line with

the shortest distance to P: cos ߮ ൌ ߣ ∙ ห݌ͳ࢘ͳʹ|ห࢘| ൌ ʹͳ࢘ ∙ |ʹͳ࢘|݌ͳ࢘ ∙ ห࢘ͳ݌ห (2)

and therefore ߣ ൌ max ൬min ൬࢘ͳʹ ∙ ʹͳ࢘݌ͳ࢘ ∙ ʹͳ࢘ , ͳ൰ , Ͳ൰ ݀ ൌ ห࢘ͳ݌ െ ߣ ∙ ͳʹห࢘ (3)

Equations (3) are applied on every segment of the

polygon, and the smallest distance d to all of the

segments is selected. Another algorithm computes

whether point P is within or outside of the polygon and

d is set to a negative value if P is outside of the

polygon.

2.5 Time Locators

The condition inputs of the blocks from sub-library

ChecksInFixedWindow are Booleans that may

originate from quite different

sources. Due to the importance of

these conditions, sub-library

TimeLocators provides often

occurring continuous-time locators,

that are temporal operators to

define the condition interval of

interest (see figure to the right).

The outputs of these blocks are

Booleans that can be used directly as condition inputs

to the blocks of ChecksInFixedWindow. FORM-L

(Thuy, 2014) has also more complex type of time

locators. It is planned to support them as well.

Modelica does not have an “Event” data type.

Instead, rising or falling edges of Boolean variables are

used to define a time instant of interest that might be

described in other modeling systems by an “Event”.

The following blocks of sub-library TimeLocators are

currently available:

 Every: Output is true during every interval for a

defined duration.

 Until: Output is true until first rising edge of

input.

 After: Output is true after first rising edge of

input.

 AfterFor: Output is true after rising edge of input

for a defined duration.

 AfterUntil: Output is true, after rising edge of

input 1 until the rising edge of input 2

The implementation of these blocks is straightforward.

In Figure 9 an example from (Thuy, 2013) is shown

using block AfterUntil. This example concerns the

generator of a Backup Power Supply system:

Formal Requirements Modeling for Simulation-Based Verification

630 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118625

Figure 9. Example for block AfterUntil.

The generator can signal several events (= rising edges

of Boolean signals), including eStart (it has started)

and eStop (it has stopped). Therefore, Figure 9 defines

the time periods where the generator is running. For

these time periods required properties might be defined

with blocks from sub-library ChecksInFixed-
Window.

The AfterUntil block is implemented as:

 input Boolean u1 "Boolean input 1 (after)";
 input Boolean u2 "Boolean input 2 (until)";
 output Boolean y "= true, after rising edge of u1

 until rising edge of u2";
initial equation
 y = u1;
equation
 when u1 then
 y = true;
 elsewhen u2 then
 y = false;
 end when;

A simulation result is shown in Figure 10: The

generator is running (afterUntil.y = true)

between two rising edges of eStart and eStop.

2.6 Checks in Sliding Windows

In sub-library Checks-
InSlidingWindow

(see figure to the right)

blocks are present that

determine whether a

particular property is

fulfilled or not in a

sliding time window.

For example, if a

sliding time window

has size T and t is the

actual time instant, then

in every time range ሾݐ െ ܶ, ሿ the propertyݐ

must be fulfilled.

Evaluating a

property in a sliding

time window requires

storing the values of

the relevant signals in a

buffer that covers

“essential” signal

values in the past at least up to time t - T, and operating

on this buffer. For Boolean signals a buffer has been

Figure 10. Simulation result for example of Figure 9.

designed which is available as Internal.Sliding-

Window (see the figure on the right). This is a package

consisting of a record

Buffer in which past

values are stored and a set

of functions operating on

this record. The current

implementation is a pure

Modelica implementation

to gain experience and

figure out the right

function interfaces. Since a

“memory” is needed that is

passed between Modelica

functions, the size of this

memory must be fixed at

compilation time and the

complete buffer must

always be copied, once an

element in this buffer is

changed. It is planned to

replace this implementation by a C-implementation

with a Modelica ExternalObject to get rid of these

restrictions.

The SlidingWindow buffer package is basically a

queue where elements with a time stamp t are inserted

at the top and elements with a time stamp older then t-

T are removed at the bottom. The memory of the queue

is defined as (where nBuffer=20 is a defined

constant):

record Buffer "Memory of sliding window"
 Modelica.SIunits.Time T "Length of sliding time win.";
 Modelica.SIunits.Time t0 "Time instant where sliding

 time window starts";
 Modelica.SIunits.Time t[nBuffer] "Time instants";
 Boolean b[nBuffer] "Values at corresp. time instants";
 Integer first "Index of first element in buffer";
 Integer last "Index of last element in buffer";
 Integer nElem "Number of elements in the buffer";
end Buffer;

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118625

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

631

Some of the functions operating on this buffer are

sketched at hand of block MinAccumulated-

Duration2, see Figure 11.

Figure 11. Example for MinAccumulatedDuration2

This example models the following requirement from

(Thuy, 2013):

When the MPS (Main Power Supply system) is

switched off, signaled by Boolean Off, then the MPS

must be declared Unavailable when it has been off

for more than 6 accumulated seconds during any 10

seconds time window.

This is achieved in the following way: Component

minAccumulatedDuration2 outputs true, if in any

time window of length 10 s variable Off was

accumulated true for at least 6 s. This signal is the

input to component during which requires that

whenever the input is true, variable Unavailable

must be true as well. In that case the block outputs

Satisfied. If the input of during is true and

Unavailable = false, the requirement is clearly

violated and the during block outputs Violated (if

the input is false, the block outputs Undecided).

Block MinAccumulatedDuration outputs a

Property whereas MinAccumulatedDuration2

outputs a Boolean. The difference is only during the

initial phase ݐ ൏ ଴ݐ ൅ ܶ where the first block returns

Undecided if the property is violated, and the second

returns false. The MinAccumulatedDuration2

block is implemented in the following way

 import Modelica_Requirements.Internal.SlidingWindow.*;

 parameter Modelica.SIunits.Time window;
 parameter Modelica.SIunits.Time lowerLimit;
 input Boolean check(start = false);
 output Boolean y "= true if property satisfied";
 output Real accDuration;

protected
 Buffer buffer "Buffer for sliding window";

initial equation
 buffer = push(init(T,time), time, check);
 pre(check) = check;

equation
 when change(check) then
 buffer = push(pre(buffer), time, check);
 end when;
 accDuration = accumulatedDuration(buffer, time, check);
 y = accDuration >= lowerLimit;

The Buffer functions have the following tasks:

 init(T,time) returns an instance of Buffer and

initializes it with the length of the sliding time

window T and the initial time instant time t.

 push(init(T,time), time, check)

generates and initializes a Buffer and stores one

element (= the initial time instant and the value of

check) in the buffer. At the same time, this call

removes values from the buffer that have a time

stamp older then time - T. The function returns a

copy of the buffer.

 The code
 when change(check) then

 buffer = push(pre(buffer), time, check);

 end when;
is executed whenever check changes its value (and

at that time instant an event occurs). The function

call stores the actual time instant and the value of

check in the buffer from the last event instant and

removes older values from the buffer. The updated

buffer is then returned at the actual event instant.

 The code
 accDuration = accumulatedDuration(buffer, time, check);

is executed during continuous-time integration,

that is whenever the integrator requires a model

evaluation. The function call accumulatedDuration(..)

computes the accumulated time duration where the

values of check in the buffer have been true during

the time window time – T and returns this value. The

third argument check of this function call is usually

ignored, but is used if the buffer is empty.

 The code
 y = accDuration >= lowerLimit;

triggers a state event when the accumulated time

duration crosses its limit and y changes its value

from false to true or from true to false

depending on the crossing direction.

2.7 Utility Functions and Blocks

Besides of the already discussed core blocks, the

Modelica_Requirements libray has also quite a lot of

utility functions and blocks that might be useful to

formally define a requirement:

Sub-library SignalAnalysis consists of blocks to

compute exact or approximate derivatives, an

integrator that can be controlled by a trigger signal, a

moving average filter, and other blocks.

Sub-library LogicalBlocks provides blocks to

convert between Boolean, Integer and Property signals,

comparing Real signals as well as logical operators

(not, or, and) on Property signals. Some of these

blocks are also available in the Modelica Standard

Library. However, since they seemed to be often

needed for requirements modeling, they have been

provided additionally with the graphical layout used

for the Modelica_Requirement blocks.

When textually modeling or when implementing

blocks, a set of useful functions for 2- and 3-valued

Formal Requirements Modeling for Simulation-Based Verification

632 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118625

logic have been collected in sub-library

LogicalFunctions. Some of these functions are

motivated by the FORM-L language and provide set-

like functionality on Modelica vectors. For example

function exist(..) has a Boolean input vector and

returns true if at least one element of this vector is true.

In combination with Modelica’s reduction expressions,

quite powerful compact formulations are possible, as

shown in the next example:

 // Define a set of pumps
 Pump pumps[3] = {Pump(isActive=time < 1 or

 time > 2 and time < 3),
 Pump(isActive=time < 0.5 or time > 2.5),
 Pump(isActive=time > 1.5 and time < 1.9)};

 // At least one pump must be active all the time
 Boolean atleastOnePumpActive =

 exists({p.isActive for p in pumps})

Sub-library Examples contains a large set of examples

to demonstrate and assess the components of the

library. Every component of the library is present in at

least in one example (so class coverage is 100 %).

There is also a growing set of application specific

examples that can be used as templates in actual

projects. For example, sublibrary Modelica_Require-

ments.Examples.AircraftRequirements contains

typical requirement definitions used in aircraft systems:

Figure 12. Sub-library of aircraft specific requirements

from Dassault Aviation.

Every example contains a short definition of the

requirement (as it is typically present in design

documents), the corresponding Modelica model to

verify the requirement together with some simple test

signals. For example, the requirement “In the cabin

area, the temperature increase should not exceed 3°C

per hour.” is verified with the following model (the

input is cabin temperature as function of time defined

in a table):

Figure 13. An aircraft requirement to assess the limited

allowed temperature increase in the cabin area.

3 Textual Definition of Requirements

In the previous examples requirements have been

defined graphically. Some users prefer, however, a

pure textual definition because requirements can be

formulated and inspected in a more compact form. It

turned out that with current Modelica it is not possible

to define requirements in a convenient way, if the

requirement model contains a memory. For this reason,

section 3.1 sketches a proposal for a Modelica

extension to improve this situation.

3.1 Calling Blocks as Functions

The goal is to introduce functions with memory and

events into Modelica. Since blocks already support

memories and events, the simplest extension seems to

be to introduce the feature that blocks can be called as

functions. However, functions have a different type

system than blocks: Arguments in functions can be

identified by position, whereas in blocks they must be

identified by name. For this reason, the “function

calling” mechanism of a block is naturally restricted to

named arguments. Since functions have an optional

mechanism for named input arguments, but not for

named output arguments, functions are generalized for

named output arguments first. Afterwards, the optional

calling mechanism of functions and the required

calling mechanism of blocks are identical.

The basic idea is simple: (a) A block is called using

its class name, (b) the inputs to the block call are

defined by the usual modifiers of a block declaration,

(c) one output of a block must be defined as return

value of the call, by appending its name with “.name”

to the “function call”. Take for example the block

MaxRising of Figure 5. It could be expressed as a

declaration in a pure textual form:

 import Modelica_Requirements.ChecksInFixedWindow.*;
 import Modelica_Requirements.Types.Property;

 Property property = MaxRising(condition = start,
 check = engineStart,
 nRisingMax = 3).y;

Note, (…).y defines that output variably y of block

Modelica_Requirements.ChecksInFixedWindow.MaxRising is

computed and assigned to variable property. The above

declaration is transformed (conceptually) to standard

Modelica with a formal mapping rule resulting in:

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118625

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

633

 MaxRising MaxRising_1(condition = start,
 check = engineStart,
 nRisingMax = 3);
 Property property = MaxRising_1.y;

This shows that a tool has to introduce a declaration for

an auxiliary component (here: MaxRising_1) and use the

output of this block (here: MaxRising_1.y) in the

expression where the call of MaxRising occurred.

The block calling can be nested in expressions.

However, in order that the simple mapping rule above

can be applied by a tool, several restrictions are

necessary. Most importantly: A block can be called as

a function only in the declaration section (with the

additional restriction that it cannot be called in an if-

expression). The proposed extension above was

implemented in prototypes of Dymola and

OpenModelica (Buffoni and Fritzson, 2014)

3.2 Examples

In the Modelica_Requirements library several textual

examples are present in sub-library Examples.Textual,

especially part of the EDF Backup Power Supply

benchmark (Thuy, 2013). Example code:

Requirement R1(property=WhenRising(condition=Off,

 check=MPSVoltage < 170).y,
 text="MPS CAN be declared Off when

 the voltage gets below 170 V");

Requirement R2(property=during(MPSVoltage < 160,

 check=Off),
 text="MPS MUST be declared Off when

 the voltage gets below 160 V");

It is a matter of taste whether a user prefers a graphical

or a textual definition – the Modelica_Requirements

library supports both choices.

4 Utilizing Requirement Models

Once requirements are defined they are typically

associated with behavioral models and various

techniques are used to verify these requirements based

on simulations. Integrating the modelled requirements

manually in test scenarios of behavioral models may be

a tedious task and there is a clear need to automate this

process. Several proposals have been discussed within

the MODRIO project for this purpose, especially

(Bouskela et al., 2015; Schamai, 2013; Schamai et al.,

2014) and also on using Modelica scripts for

associating requirements with behavioral models. In

(Elmqvist et.al, 2015) two new Modelica language

constructs are proposed to simplify this “automatic

binding” task. These language elements are also useful

for other applications, for example to compute the total

mass of a multibody system or for contact handling.

The current development stage allows to check in

every simulation run whether the defined requirements

are satisfied or violated (or are not tested). Industrial

applications would typically involve additional

software on top of this base functionality, such as:

 Monte Carlo Simulation

Various initial conditions, operating points, and/or

external disturbances are randomly generated

within meaningful bounds and for every scenario

simulations are performed. This brute force

method for evaluation of dynamic systems is

standard in many software tools.

 TestWeaver

TestWeaver (Junghanns et al., 2008) is a software

tool from QTronic to construct automatically test

scenarios, especially also for Modelica models.

The goal of the tests is to drive the system in a

state where it violates its specifications. A major

application area are systems where the inputs have

a countable number of values or areas (and these

values vary over time).

 Anti-Optimization

A technique used at DLR-SR to evaluate controller

designs, see e.g. (Joos, 2011): A special parameter

optimization problem is formulated, in order to

find an operating point of the system (e.g. height

or speed of an aircraft), where the controller works

as badly as possible. The major application area

are systems where the operating region and the

requirements are described by continuous signals.

5 Conclusions and Outlook

In this article the design of a new, open source

Modelica library was presented to formally model

requirements for industrial applications. The design

was driven by applications of EDF (power plants,

electrical systems) and Dassault Aviation (aircrafts).

The basic design is based on the FOrmal Requirements

Modeling Language FORM-L from (Thuy, 2014). The

library in the current form (July 2015) is in an Alpha

version. It is planned to additionally implement

FORM-L components with overlapping sliding time

windows, to include dynamic response and FFT

requirement blocks from (Kuhn et al., 2015), to

introduce continuous indicators for the properties

where this is possible (in order that property blocks can

be directly used as constraints or criteria for

optimization-based methods), to add use cases of EDF

and Dassault Aviation, and to connect the library to

existing verification frameworks, such as TestWeaver.

Acknowledgements

This paper is based on research performed within the

ITEA2 project MODRIO. Partial financial support of

the German BMBF, the French DGE, and the Swedish

VINNOVA are highly appreciated.

Helpful discussions with Martin Kuhn (DLR) are

appreciated. Furthermore, helpful discussions with

members of the Modelica Association to define the fine

details of the “calling-blocks-as-functions” approach,

are also appreciated. Finally, improvement suggestions

of the reviewers of this paper are appreciated.

Formal Requirements Modeling for Simulation-Based Verification

634 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118625

References

C. Baier and J.-P. Katoen. Principles of Model Checking.

MIT Press. ISBN 978-0-262-02649-9, 2008.

D. Bochvar Ob odnom trekhznachnom ischislenii i ego

primenenii k analizu paradoksov klassicheskogo

rasshirennogo funkciona’nogo ischislenija. In

Matematicheskij Sbornik 4, no 46, pp. 287–308. 1937.

D. Bouskela, N. Thuy, and A. Jardin . D2.1.1 – Modelica

extensions for properties modelling, Part II: Modeling

Architecture for the Design Verification against System

Requirements. Internal report, ITEA2 MODRIO project,

March 2015.

M.A. Breuer. A Note on Three-Valued Logic Simulation.

IEEE Transaction on Computer C-21, no. 4, pp. 399-402,

1972.

L. Buffoni and P. Fritzson. Expressing Requirements in

Modelica. Proceedings of the 55th International

Conference on Simulation and Modeling (SIMS 2014),

October 21-22, Aalborg, Denmark, 2014.

Dassault Systèmes. Dymola 2016., 2015.

http://www.Dymola.com

Department of Defense Aircraf.t Electric Power

Characteristics (MIL-STD-704F). 1984. Download:

http://everyspec.com/MIL-STD/MIL-STD-0700-

0799/MIL-STD-704F_1083/

A. Garro, A. Tundis, and M. Otter. D2.1.1 – Modelica

extensions for properties modelling, Part IVb: FORM-L

and Modelica: syntax and relationships. Internal report,

ITEA2 MODRIO project, Sept. 2014.

H. Elmqvist, H. Olsson, and M. Otter. Constructs for Meta

Properties Modeling in Modelica. Accepted for

Modelica’2015 conference, 2015.

A. Jardin and D. Bouskela. D2.1.1 – Modelica extensions

for properties modelling, Part I: Users motivation. Internal

report, ITEA2 MODRIO project, Sept. 2014.

A. Jardin, D. Bouskel, N. Thuy, N. Ruel, E. Thomas, L.

Chastanet, R. Schoenig, and S. Loembé. Modelling of

System Properties in a Modelica Framework. Proceedings

8th Modelica Conference, Dresden, Germany, March 20-

22., pp. 579-592, 2011. Download:

http://www.ep.liu.se/ecp/063/065/ecp11063065.pdf

H. D. Joos. Worst-case parameter search based clearance

using parallel nonlinear programming methods. In:

Optimization based Clearance of Flight Control Laws.

Lecture notes in control and information sciences, 416.

Springer, pp. 149-159, 2011. ISBN 978-3-642-22626-7.

ISSN 0170-8643.

A. Junghanns, J. Mauss, and M. Tatar. TestWeaver – A Tool

for Simulation-based Test of Mechatronic Designs.

Proceedings of the Modelica’2008 Confererence, pp. 341-

348, March 3-4, 2008. Download:

https://www.modelica.org/events/modelica2008/Proceedin

gs/sessions/session3c4.pdf

M. Kuhn, M. Otter and T. Giese. Model Based Specifications

in Aircraft Systems Design. Accepted for Modelica’2015

conference, Sept. 2015.

L. Lamport. Principles and Specifications of Concurrent

Systems, 2015. Hyberbook:

http://research.microsoft.com/en-

us/um/people/lamport/tla/hyperbook.html

M. Leucker, and C. Schallhart, C. A Brief Account of

Runtime Verification. Journal of Logic and Algebraic

Programming 78, no. 5, pp. 293-303, 2009.

J. Levy, S. Hassen, and T.E. Uribe. Combining Monitors for

Runtime System. Electronic Notes in Theoretical Computer

Science 70, no. 4, pp. 112-127, 2002.

J. Łukasiewicz. On three-valued logic. In L. Borkowski

(ed.), Selected works by Jan Łukasiewicz, North–Holland,

Amsterdam, pp. 87–88, 1920. ISBN 0-7204-2252-3.

Modelica Association. Modelica, A Unified Object-Oriented

Language for Systems Modeling.

Language Specification, Version 3.3, May 9, 2012.

https://www.modelica.org/documents/ModelicaSpec33.pdf

OMG. Requirements Interchange Format (ReqIF), 2013.

Download:

http://www.omg.org/spec/ReqIF/1.1/PDF/

http://www.omg.org/spec/ReqIF/20110401/reqif.xsd

Open Source Modelica Consortium. OpenModelica, 2015.

https://openmodelica.org/

M. Otter M, L. Buffoni, P. Fritzson, M. Sjölund, W.

Schamai, A. Garro, A. Tundis, and H. Elmqvist. D2.1.1 –

Modelica extensions for properties modelling, Part IV:

Modelica for properties modeling. Internal report, ITEA2

MODRIO project, Sept. 2014.

N. Rescher. Many-valued Logic, McGraw-Hill, 1969.

W. Schamai. Model-Based Verification of Dynamic System

Behavior against Requirements: Method, Language, and

Tool. Ph.D. Thesis, No. 1547, University of Linköping,

2013.. Download: http://liu.diva-

portal.org/smash/record.jsf?pid=diva2:654890

W. Schamai, L. Buffoni, and P. Fritzson. An Approach to

Automated Model Composition Illustrated in the Context

of Design Verification. Journal of Modeling, Identification

and Control, volume 35- 2, pages 79—91, 2014.

S. Steinhorst and L. Hedrich . Targeting the Analog

Verification Gap: State Space-based Formal Verification

Approaches for Analog Circuits. CAV 2009, Grenoble,

France, 2009. Download

http://www.em.cs.uni-

frankfurt.de/FAC09/papers/FAC_09_Steinhorst.pdf

N. Thuy. D8.1.3 – Part 1 The Backup Power Supply. Internal

report, ITEA2 MODRIO project, Nov. 2013.

N. Thuy. D2.1.1 – Modelica extensions for properties

modelling, Part III: FOrmal Requirements Modelling

LAnguage (FORM-L). Internal report, ITEA2 MODRIO

project, Sept. 2014.

M. Tunnat. Integration modellbasierter Methoden in den

Entwicklungsprozess hybrider Flugzeugregelungssysteme

am Beispiel des Ventilation-Control-System. Master thesis,

Technical University Hamburg-Harburg, Institut für

Flugzeug-Kabinensysteme, 2011.

Session 8C: Safety & Formal Methods

DOI
10.3384/ecp15118625

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

635

