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Abstract 

This paper describes, exemplifies and substantiates a 
method for detection of the minimal path set of any 
fault-tolerant technical system that is represented as a 

multi-domain object-oriented model. Thus, the method 

automatically performs a safety or reliability analysis 
of the system. 

Keywords: safety analysis, reliability analysis, minimal 
path set, graph algorithms, modelling of failures, 

failure probability 

1 Introduction 

Safety and reliability are essential in transport aircraft 
design and operation, as well as other technical areas. 

Safety analyses are therefore an inherent part of the 

complex process of aircraft and on-board systems 
development. In systems development, multi-domain 

object-oriented modelling and simulation have now 
become the state-of-the-art. 

This paper describes a method that integrates safety 

or reliability analysis with multi-domain object-
oriented modelling. In essence, the method 

automatically detects the minimal path set of any fault-
tolerant technical system. The method is based on the 

simulation of normal behaviour, degradation and 

failure of a system. Thus, modelling of failures is 
supplemented to component models from generic 

libraries, e.g. the Modelica Standard Library, that 

typically represent only normal, intact behaviour. 
Other approaches to automated safety or reliability 

analysis based on multi-domain object-oriented 
modelling exist. A model-based diagnosis approach 

has been described by (Bunus, Lunde, 2008) that uses 

constraints (inequalities) instead of differential 
equations. It is particularly dedicated to diagnosing 

systems, i.e. detecting and isolating faults. Another 
approach described by (Papadopoulos et al., 2001) 

performs semi-automatic fault-tree synthesis based on 

fault annotations included in the components of a 
system model. 

The method described in this paper differs from the 

existing approaches, in so far that it uses differential-
algebraic equations and modelling of failures. It thus 

permits the conducting of all other simulation studies 
that initially motivated the implementation of a model, 

as well as it ensures a consistent safety analysis due to 
the modelling, not just annotating, of failures. The goal 

of the method is to improve the development process 
of fault-tolerant, safety-critical systems. 

2 Modelling Approach 

This section refers to the approach selected for the 

modelling of fault-tolerant systems and the additions 

necessary to enable automated safety analysis. 

2.1 Modelling of Failures 

The proposed minimal path set detection method 
requires that failure of a system can be simulated in 

addition to its normal behaviour. Thus, the modelling 
has to be supplemented by equations that reflect 

failures of system components and, if applicable, by 

operating logics that determine how a system reacts to 
the occurrence of component failures. 

Model parameter values are changed in order to 

represent a failure. In doing so, the model equations 
remain the same (structure-invariant approach). 

Corresponding examples of aircraft on-board system 
models including component failures, e.g. electrical 

open circuit, mechanical disconnection or loss of 

hydraulic pressure, are provided in (Schallert, 2008, 
2011, 2014). The proposed detection method activates 

component failures by directly accessing the relevant 
model parameters. Alternatively, a universal fault 

triggering network described by (van der Linden, 2014) 

can be used for activation of failures. 
Provided that the preconditions (see subsection 

3.1.2) are met, the detection method can be used also if 

the structure of the model equations is changed to 
represent failures. Such a structure-variant, multi-mode 

approach is described by (Elmqvist et al., 2014). 

Component failure rates �� are stored in each 

component model that includes failures. Since the �� 
values are used only for post-processing (see equation 
2), they can be inserted also as custom annotations; a 

concept described by (Zimmer et al., 2014). 

2.2 Indication of System Status 

Safety or reliability assessment requires the analyst to 
define criteria that indicate if a system operates 

normally or if it fails. Such criteria have to be 
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implemented in a system model, in order to compute a 

sysOp output signal that indicates system operation. 

In case of a flight control surface actuation system, 

such as described in (Schallert, 2014), sysOp is 

computed by comparing the actual position or rate of 

the controlled surface with the command (model 
input). The capability of the system to follow 

commands is simulated by the minimal path set 
detection method for various combinations of intact 

and failed components. In doing so, sysOp is evaluated 

for correlation with the respective component states. 

3 A Method for Minimal Path Set Detection 

In this section a method is described that solves the 

problem of determining the failure probability of a 

system by detecting its minimal path set. The method is 
called DMP. It draws on a representation of the system 

model object structure as a graph and on simulation. 

Minimal path set analysis generally assumes that a 
system and its components are two-state, intact or 

failed, as explained in section 2.3 of (Birolini, 2007). 
The DMP method is a state space simulation. The 

state space, in this context, denotes the set of all 

combinations of intact and failed components of a 
system to be examined for detection of its minimal 

path set. Evaluation of the system graph reduces the 
size of the state space and hence the number of 

simulations required. 

3.1 Definitions and Preparations 

3.1.1 Definitions 

Definitions are provided of the terms used in the 
following for the DMP method: 

Set. A defined collection of distinct objects, e.g. the 
components of a system. 

Subset. A is a subset of B, A ⊆ B, if every object of A is 

also an object of B, e.g. {1, 2, 3} ⊆ {1, 2, 3}. If A is a 

subset of but unequal to B, then A is a proper subset of 

B, A ⊂ B, e.g. {1, 2} ⊂ {1, 2, 3}. 

Superset. A is a superset of B, A ⊇ B, if every object of 

B is also an object of A, e.g. {1, 2, 3} ⊇ {1, 2, 3}. If A 

is a superset of but unequal to B, then A is a proper 

superset of B, A ⊃ B, e.g. {1, 2, 3} ⊃ {1, 2}. 

Difference set. A \ B denotes the set of elements that are 

members of A but not of B, e.g. {1, 2, 3} \ {2} = 

{1, 3}, or {1, 2, 3} \ {4} = {1, 2, 3}. 

Component. A distinct element of a system. In this 

paper, components are also called nodes. 

Combination. A set of intact components of a system. 

Path. A set of intact components that causes a system 
to operate. 

S-T path. A Source-to-Target path in a graph. 

Path set. A set of paths of a system. 

Minimal path. A path that cannot be reduced without 
causing system failure. 

Minimal path set. The set of all minimal paths of a 

system. 

Graph. A representation of a set of objects, e.g. the 

components (nodes) of a system, and of the 

connections between them. 

Node. An object in a graph. Nodes are also called 

components in this paper. 

Edge. A link that connects a pair of nodes in a graph. 

Articulation. A node in a graph (or path) that, if 

removed, disconnects the graph (or path) into several 
subgraphs. 

Subgraph. A part of a graph whose set of nodes and set 
of edges are subsets of those of the graph, the set of 

edges being restricted to the subset of nodes. 

Density. The density d of a graph is generally, e.g. in 
(Diestel, 2010), defined by �(�,�) = 2� �(� − 1)⁄  (1) 

where N and E denote the numbers of nodes and edges 
of the graph, respectively. 

Probability computation. The probability of system 
operation or failure is computed from the system’s 

minimal path set in applying the reliabilities of its 
components. Let Ci denote the intact state of 

component i. Then, the probability of occurrence P of a 

minimal path MP is, see (Meyna, Pauli, 2003), �(��) = �(�1 ∧ �2 ∧… )                        ∀�� ∈ �� �(��) = � �(��)��∈�� = � ��(�)��∈�� ,    �� = �−��� (2) 

with the component reliabilities Ri, failure rates λi and 

exposure time t. Exponentially distributed lifetimes are 

assumed. Other lifetime models, e.g. Weibull 
distribution, can be used as well. The probability of 

system operation Rsys(t) is computed from the 

probabilities of the minimal paths by ����(�) = �(��1 ∨…∨ ���) 

= ������� −�
�=1 � � ����� ∧ �����

�=�+1 + . . .

�−1
�=1  

+(−1)�+1 ⋅ �(��1 ∧ ��2 ∧…∧ ���) 

(3) 

where r is the number of all minimal paths in the set. 

Equation 3 is evaluated for illustration at the end of 
subsection 3.2.2. 

3.1.2 Properties of Minimal Paths and Requirements 

for Detection 

This subsection explains the assumptions and 
requirements that apply to the minimal path set 

detection method DMP described in section 3.2: 

1. The system behaves monotonously. This refers to 
a system that operates if all its components are 
intact and fails if all components fail. If the system 
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operates while not all components are intact, it 
continues operating if any further component 

becomes intact. Conversely, if the system has 

failed, it remains failed if any further component 
fails. This definition of monotony is common in 

safety analysis. For instance, it can be found in 

section 14.2 of (Meyna, Pauli, 2003). 

 

2. Every real world component is represented by one 

model object and by one node in a corresponding 
graph. No component is represented by two or 

more model objects or nodes. 

DMP relies on a representation of the object structure 

of the system model as a graph. Nodes of the graph 
represent components, and edges the connections 

between components. The establishing of a graph is 

described in subsection 3.1.3. The properties of 
minimal paths, and in particular their situation in the 

graph, are explained in the following, which then 
proceeds to further requirements for DMP. 

Depending on the system model and, if applicable, 

the marking of sources (S) and targets (T) in the 
corresponding graph, some S-T paths are minimal 

paths. This is true, for instance, for the electric network 
models shown in (Schallert, 2008, 2011), where also 

related detection methods are described. In general, 

however, what is known is only that a minimal path 
consists of one or more connected nodes. 

This is explained by Figure 1 that depicts a part of 
an aircraft’s flight control surface actuation system 

model and its accompanying graph. The edges of the 
graph correspond to the interfaces that exchange 

power, material or signals among the components 

(nodes) of a system. This exchange among 
neighboured nodes enables a system to operate. No 

other nodes are situated between any of those nodes 

that exchange power, material or signals and hence 
belong to a minimal path. Thus, only a coherent set of 

nodes can be a minimal path. The following defines a 
coherent set of nodes: 

Definition 1. A set of nodes in a graph is coherent if 
any two nodes of the set are connected through a series 

of edges and through only those nodes that belong to 

the set. 

Figure 2 shows coherent and incoherent sets of 

nodes (marked blue) for illustration. An S-T path, such 
as (c), is a special case of a coherent set of nodes. 

 

Figure 2. Coherent (a), (b), (c) and incoherent sets of 

nodes (d), (e) in a graph 

Coherence (interconnection) of intact nodes in the 

system graph is a precondition for a minimal path. 
Removing a node from a minimal path interrupts the 

exchange of power, material or signals among the 

nodes of the minimal path. If no other minimal paths 
exist, the system fails. If the system operates with an 

incoherent set of intact nodes, nodes can be removed 
from the set, i.e. fail, without interrupting the exchange 

of power etc. Such a set of nodes is therefore a path but 

not a minimal path. Thus, the third assumption for 
method DMP is: 

 
 

Figure 1. Exchange of power and signals across the edges in a coherent set of nodes 
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3. Only a coherent set of intact nodes in a system 
graph can be a minimal path. 

Because not every coherent set of intact nodes is a 
minimal path, the system model is simulated to 

determine which ones are actually minimal paths. 

3.1.3 Graph Representation of Multi-Domain Object-

Oriented Models 

A graph is defined by its adjacency list (array AL). In 

AL, each row corresponds to a node of the graph. The 

neighbours of a node are stored in the respective rows 

of AL, as will be illustrated. If more than one 

connection exists between two components of a model, 

this is reflected by a single edge in the graph. (That is, 

in each row of AL, any node is stored not more than 

once.) It is only relevant that any two nodes of the 

graph are connected, but it is not important whether the 
two nodes are connected by one or more than one edge. 

Additionally, the interface types are not evaluated by 
method DMP, so they are not reflected in the graph. 

 

Figure 3. Components and connections in a multi-domain 

object-oriented model 

For illustration, the adjacency list is indicated for a part 

of the system model depicted in Figure 1. Figure 3 (a) 

shows the component (node) and interface names, and 
the indices in (b). The numbering of nodes – encircled 

in (b) – corresponds to Figure 1. The algorithm that 

actually prepares an adjacency list is described in 
subsection 3.1.3 of (Schallert, 2015). 

The connections via mechanical flanges, hydraulic 
ports, electric pins etc. are declared in the model by the 

connect() statements below. They are expressed in 

terms of the component and interface names (left 
column), and in terms of component and interface 

indices (right column). 
 

1. 
connect(POB1.flange_a, 
Motor1.flange); 

(1.1, 2.3) 

2. 
connect(Motor1.port_a, 
Valve1.port_A); 

(2.1, 3.1) 

3. 
connect(Motor1.port_b, 
Valve1.port_B); 

(2.2, 3.2) 

4. 
connect(POB1.p, 
Computer1.p_B); 

(1.2, 4.5) 

5. 
connect(Valve1.p, 
Computer1.p_V); 

(3.3, 4.4) 

6. 
connect(Computer1.Sw1, 

Up1.p); 
(4.2, 5.1) 

7. connect(Up1.p, Down1.p); (5.1, 6.1) 

8. 
connect(Computer1.Up1, 
Up1.n); 

(4.1, 5.2) 

9. 
connect(Computer1.Down1, 
Down1.n); 

(4.3, 6.2) 

 

A special case occurs if more than one node is directly 
or indirectly connected to one and the same interface of 

a node, as happens for the 6
th

 and 7
th

 connections of the 

example: Computer1.Sw1 (4.2) is connected to 

Up1.p (5.1), and in turn Up1.p (5.1) is connected 

to Down1.p (6.1). Actually, there is a direct 

connection between (4.2) and (6.1). It only appears 

to be indirect, across (5.1), because each connect() 

statement links exactly two nodes. To reflect that a 

direct connection exists between (4.2) and (6.1), an 

auxiliary node (14) is introduced. Auxiliary nodes do 

not represent any real or model object; rather, they are 

introduced to ensure that coherent sets of nodes are 

correctly detected by method DMP. An auxiliary node 

is stored as an additional row in the adjacency list AL. 

Table 1 specifies the adjacency list by the node 
indices. Figure 4 shows the corresponding graph. 

Table 1. Adjacency list AL for Figure 3 (b) 

 1 2  4    

 2 1  3    

 3 2  4    

 4 1  3 5 6 14 

 5 4 14    

 6 4 14    

14 4  5 6   
 

 

Figure 4. Graph for Figure 3 (b) 
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3.2 Detection of Minimal Paths 

Method DMP is capable of detecting the minimal path 
set if conditions 1, 2 and 3 defined in subsection 3.1.2 

are fulfilled. The detection starts with all system 
components (nodes) intact. Nodes are then 

successively removed from the system graph, which 

corresponds to component failures. The model is 
simulated to identify if the system still operates or fails. 

Articulations can occur in the graph that, if 

removed, cause disconnection of the graph into several 
subgraphs. Since only a coherent set of intact nodes 

can be a minimal path, splitting up the graph at 
articulations reduces the state space and thus the 

number of simulations. The lower the density of a 

system graph is, the more articulations occur within it 
and thus fewer simulations are required. For 

completeness, method DMP allows that articulations 
can also belong to a minimal path. 

3.2.1 Detection Algorithm 

Figure 5 shows a flow chart of the detection algorithm. 
It consists of a preparation phase (steps DMP.1 - 4) and 

the actual, iterative detection process (steps DMP.5 - 

17). Steps DMP.3, 8, 11 - 16 refer to lower level 
algorithms that are described in detail, including code, 

in (Schallert, 2015). The meaning of the symbols used 

is as follows: 
 

nr number of all components that can 

fail of a system 

nLoop iteration counter of detection process 

rn node(s) to be removed from a path of 

array PSprev 

PS, PSprev arrays of path sets in the actual and 

previous iteration, respectively, of 

the detection process 

isMinPS, 
isMinPSprev 

Boolean arrays that store if a path in 

array PS or PSprev is minimal 

np, npprev number of paths stored in PS and 
PSprev 

SF array for storing combinations that 

cause system failure 

nsf number of combinations stored in 

array SF 
 

In the preparation phase, the necessary data are 

retrieved from the system model (step DMP.1). Then, 
the model is simulated to check if the system operates 

for the set of initially intact components (nodes). To 

this end, the model output sysOp is evaluated. A 

monotonous system will operate, and the procedure is 
continued only in this case (step DMP.2). If the system 

fails, no minimal path can be detected, and the process 

is aborted. Next, a graph (adjacency list) of the system 
model is established (step DMP.3, see 3.1.3). Then, 

several arrays are initialised (step DMP.4) for the 

detection process. 

At the start of an iteration, the paths detected so far, 
their number, as well as the information whether they 

are minimal are assigned to PSprev, npprev and 

isMinPSprev. Arrays PS, isMinPS and the counter np 

are reset (step DMP.5). Then, nLoop is increased by one. 

Next, combinations are generated from the paths in 

PSprev. If the ith path, denoted by PSprev[i, :], is 

minimal (checked in step DMP.7), then it is not further 
reduced, because any subset of a minimal path causes 

system failure. If the ith path is not minimal, then all 

subsets are generated that remove one intact node rn 

from the path (step DMP.8): PSprev[i, :] \ {rn} for all 

rn ∈ PSprev[i, :] and rn ∈ {1, nr}. If node nr is an 

articulation of path PSprev[i, :], then the corresponding 

subgraphs of PSprev[i, :] are generated. Articulations 

and subgraphs are determined by an algorithm based 
on depth-first search described by (Tarjan, 1972). 

Along with each subgraph, the non-articulations of 

PSprev[i, :] that also belong to the respective subgraph 

are stored. This information is used later, in step 

DMP.13, to generate combinations that remove two or 
more non-articulations from a path, dependent on the 

simulation result (step DMP.11). Due to monotony of 

the system, any subset of a path is generated only if it 

is not a subset of any combination stored in SF that 

causes system failure. Thus, if no subset is generated 

from path PSprev[i, :] in step DMP.8, then the system 

fails for every subset of this path; it is minimal and is 

marked by isMinPSprev[i] := true. The generation of 

subsets of paths ends after every path in PSprev has 

been processed, i.e. i > npprev (step DMP.10). 

Next (step DMP.11), the model is simulated for 
every generated combination in order to determine if 

the system is operating. From the simulation result 

(sysOp), it is first determined which paths in PSprev are 

minimal. If a path is minimal, it is stored in PS and 

marked as minimal in isMinPS. Then, dependent on 

whether they cause system operation or failure, the 

combinations are stored either in PS or in SF, and the 

respective counter (np or nsf) is increased (step 

DMP.12). 

For those paths in PS that were established due to an 

articulation and that are no superset of any other path, 
combinations are generated that remove two or more 

non-articulations from the original path in PSprev (step 

DMP.13). This is necessary since articulations can also 

belong to a minimal path. The system model is then 

simulated for the generated combinations. Dependent 
on the simulation result, a combination is stored either 

in PS or SF (steps DMP.14 and 15). 

Next, array PS is tidied up by deleting those paths 

that are a superset of any other path (step DMP.16). A 
path can be minimal only if it is not a superset of any 

other path. If every of the np paths in PS is marked as 

minimal (step DMP.17), the detection is complete and 
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the process ends. Otherwise, the process continues with 

a new iteration at step DMP.5. 

3.2.2 A Minimal Path Set Detection Example 

The detection algorithm DMP is illustrated by means 

of the example graph shown in Figure 6. It is assumed 
that this graph is deduced from the object-oriented 

model of any technical system. The minimal path set is 
assumed as PS = {{1, 2, 3}, {4, 5, 6}, {1, 3, 4, 6, 7}}. 

 

 

Figure 6. An example graph 

 

Figure 5. Flow chart of minimal path set detection algorithm DMP 
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The meaning of the symbols used is as follows, as yet 
not defined: 

 

isArt indicates if rn is an articulation of the 

respective path 

comb generated combination of intact nodes 

simC array of generated combinations, input for 

simulations of the system model 

sysOp array of simulation result (system operates 

or not) for every combination in simC 

nonArt non-articulation nodes of a path in PSprev 

that also belong to a generated subgraph 
 

The detection proceeds as follows. In the tables, 

column “row” indicates the progress of the algorithm 

in terms of “nLoop” - “number of comb”, e.g. 0-1 

denotes combination 1 of iteration 0 (nLoop = 0). 

In the preparation phase it is checked if the system 

operates when all its components are intact (step 

DMP.2 in Figure 5). Thus, the simulation input simC is 

as indicated below in Table 2. At this initial stage, no 

path has yet been detected and PSprev is empty. 

The system operates, so the set of initially intact nodes 

is stored as a single, non-minimal path (np = 1) in PS 

(step DMP.4). SF is empty (nsf = 0), Table 3. 

Table 3. Path set after initial stage of detection process 

PS isMinPS  SF 

{1, 2, 3, 4, 5, 6, 7} -  - 

The process continues with iteration one (nLoop = 1). 

The path data are assigned to PSprev, isMinPSprev and 

npprev. PS, isMinPS and np are reset (step DMP.5). 

Combinations are then generated from path PSprev[1, :] 

as follows (step DMP.8): Node 1 is an articulation. The 
path splits into two subgraphs {2, 3} and {4, 5, 6, 7} 

due to the removal of node 1. The non-articulations of 

the original path PSprev[1, :] that also belong to the 

respective subgraphs are {2, 3} and {5, 7}. Node 2 is 

not an articulation, thus a combination is generated by 

removing node 2 from PSprev[1, :], and likewise for 

nodes 3, 5 and 7. Altogether, ten combinations are 
generated for simulation of the system model, Table 4. 

The simulation result of step DMP.11 (column 

sysOp) indicates that path PSprev[1, :] is not minimal, 

because the system operates for subsets of it, namely 
for those in rows 1-2, 1-3, 1-4, 1-5, 1-7, 1-8 and 1-10. 

These combinations are stored as paths in PS, np = 7. 

The other combinations in rows 1-1 and 1-6 are stored 

in SF, nsf = 2 (step DMP.12). The one in row 1-9, 

{7}, is not stored in SF as it is a subset of {5, 6, 7}. 

At this stage, two of the seven paths in PS are not 

supersets of any other path, namely rows 1-2 and 1-5 in 

Table 4 (marked bold). Other paths can exist that 

include some of the articulations of the original path 

PSprev[1, :]. To assure that such paths are detected, 

further combinations that are no superset of any path in 

PS - in this case {4, 5, 6, 7} and {1, 2, 3} - must be 

generated (step DMP.13). Such combinations remove 
as many non-articulations from the original path as 

non-superset paths were deduced from it, namely two 

(rows 1-2 and 1-5) in the case of PSprev[1, :]. To avoid 

generating supersets, one node of every set of non-

articulations, {5, 7} and {2, 3}, is removed from the 
original path, respectively. Thus, the combinations 

PSprev[1, :] \ {2, 5}, PSprev[1, :] \ {2, 7}, PSprev[1, :] \ 

{3, 5} and PSprev[1, :] \ {3, 7} are generated, as listed 

in rows 1-11 through 1-14, Table 5. 

Due to the simulation result, three more paths are 

stored in PS, np = 7 + 3 = 10, and one more 

combination in SF, nsf = 2 + 1 = 3 (steps DMP.14 and 

15). The total number of simulations so far is nsim = 

1 + 10 + 4 = 15. Supersets of paths are removed from 

PS, which leads to np = 5 paths remaining (in Table 6) 

after completion of step DMP.16. 

Table 6. Path set PS and combinations that cause system 

failure SF, as existent after 1
st
 iteration of process 

PS isMinPS  SF 

{1, 2, 3} -  {1, 2, 4, 6, 7} 

{1, 2, 4, 5, 6} -  {2, 3} 

{1, 3, 4, 5, 6} -  {5, 6, 7} 

{1, 3, 4, 6, 7} -   

{4, 5, 6, 7} -   

Since none of the paths in PS is marked as minimal 

(step DMP.17), the process continues with a second 

iteration (nLoop = 2). The path data are assigned to 

PSprev, isMinPSprev and npprev. PS, isMinPS and np 

are reset (step DMP.5). Then, combinations are 

generated (step DMP.8) from each of the npprev = 5 

paths in PSprev as listed in Table 7. Three combinations 

are generated from PSprev[1, :] = {1, 2, 3}, but only one 

is stored in simC for simulation. The other two are not 

stored in simC because they are a subset of a 

combination in SF, as indicated in rows 2-1 and 2-3. If 

a combination causes system failure, every subset of it 

causes system failure as well due to system monotony. 

Any combination is stored only once in simC, as 

indicated in row 2-12, for instance. Eight combinations 
are stored altogether for simulation in step DMP.11. 

Table 2. Combinations tested (by simulation of system model) at initial stage of detection process 

row PSprev rn isArt comb comb stored in simC sysOp nonArt 

     no yes   

0-1 - - - {1, 2, 3, 4, 5, 6, 7} - x x - 
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The simulation result (column sysOp in Table 7) 

indicates that PSprev[1, :] = {1, 2, 3} and PSprev[4, :] = 

{1, 3, 4, 6, 7} are minimal, because the system fails for 

every respective subset. These paths are stored in PS 

and marked as minimal in isMinPS (step DMP.12). In 

addition, two non-minimal paths, {4, 5, 6} in row 2-5 

and {1, 4, 5, 6} in row 2-6, are stored in PS; the latter 

will be removed in step DMP.16. 

It is not necessary in this iteration to generate 

combinations that remove two or more non-

articulations from any path in PSprev. The reason is: At 

most one subgraph that causes system operation is 

deduced from any path in PSprev. In the case of 

PSprev[2, :] = {1, 2, 4, 5, 6}, subgraphs {2}, {4, 5, 6} 

and {1, 2}, {5, 6} are generated due to articulations 1 

and 4, respectively. The system operates only for {4, 5, 
6}. In order to generate every combination from 

PSprev[2, :] that is no superset of {4, 5, 6}, it is 

sufficient to remove one non-articulation from 

PSprev[2, :]. These combinations are generated already 

in step DMP.8, as Table 7 shows (rows 2-9 and 2-10). 

Thus, np = 4 paths are stored in PS of which two are 

minimal. nsf = 3 + 3 = 6 combinations are stored in 

SF. The total number of simulations so far is nsim = 

15 + 8 = 23. np = 3 paths remain in PS (see Table 8) 

after removal of supersets in step DMP.16. 

Table 8. Path set PS and combinations that cause system 

failure SF, as existent after 2
nd

 iteration of process 

PS isMinPS  SF 

{1, 2, 3} x  {1, 2, 4, 5} 

{1, 3, 4, 6, 7} x  {1, 2, 4, 6, 7} 

{4, 5, 6} -  {1, 3, 4, 5} 

   {1, 3, 4, 6} 

   {2, 3} 

   {5, 6, 7} 

Since not all paths are marked as minimal, the process 

enters a third iteration, nLoop = 3. Again, the path data 

are assigned to PSprev, isMinPSprev and npprev. PS, 

isMinPS and np are reset. Then, combinations are 

generated only for the non-minimal path PSprev[3, :] = 

{4, 5, 6} in step DMP.8. As Table 9 shows, every 

generated combination is a subset of any combination 

in SF. This means that PSprev[3, :] is also minimal, and 

no further simulations are necessary. Thus, the process 

is complete. The minimal path set of the example 
system (Figure 6) is correctly detected: 

Table 10. Minimal path set detected after 3
rd

 iteration 

PS isMinPS 

{1, 2, 3} x 

{1, 3, 4, 6, 7} x 

{4, 5, 6} x 

Next, the probability of system operation (or failure) is 
computed. For illustration, equation 3 is evaluated for 

the detected minimal path set. With the component 

reliabilities Ri = Ri(t), the probabilities of the minimal 
paths are: �(��1) = �1�2�3, �(��2) = �1�3�4�6�7, �(��3) = �4�5�6. 

For the 2
nd

 order intersections, the probabilities are: �(��1 ∧ ��2) = �1�2�3�4�6�7, �(��1 ∧ ��3) = �1�2�3�4�5�6, �(��2 ∧ ��3) = �1�3�4�5�6�7. 

The probability of the single 3
rd

 order intersection is: �(��1 ∧ ��2 ∧ ��3) = �1�2�3�4�5�6�7. 

Employing these products, equation 3 reads ����(�) = �1�2�3 + �1�3�4�6�7 + �4�5�6 −(�1�2�3�4�6�7 + �1�2�3�4�5�6 

+�1�3�4�5�6�7) + �1�2�3�4�5�6�7. 

If it is assumed that λi = 10
-2

/h and t = 1h, thus R = Ri = 

0.990, then the probability of system operation is 
Rsys(1h) = 2R

3
 + R

5
 - 3R

6
 + R

7
 = 0.99922 or likewise, 

the probability of system failure is Fsys(1h) = 1 - 

Rsys(1h) = 7.8⋅10
-4

. 

3.2.3 Proof and boundary effort of detection method 

The minimal path set detection method DMP gives a 

complete result when applied to any multi-domain 

object-oriented system model that fulfills the 
conditions 1, 2 and 3 stated in subsection 3.1.2. In 

addition, the method is finite which means that it 

terminates when applied to any such model. The 
completeness and finiteness are proven in the 

following. The upper and lower bounds of the required 
computing effort are also derived. 

Completeness. Consider a detection method that 

merely exploits the monotony of the analysed system. 
It starts with a set of all nodes as the initial path. Every 

combination is generated that removes a single node 
from the path. It is tested for each (by simulation of the 

model) if the system operates. Those combinations that 

cause system operation constitute a set of paths. In the 
set of paths, only those are kept that are no superset of 

any other, because only a non-superset path can be 

minimal. Thus, a complete path set of the system exists 
at the end of an iteration of the detection method. 

A next iteration is entered. All combinations are 
generated that remove a single node from every path in 

the set of the previous iteration. In so doing, subsets of 

combinations that cause system failure are omitted. 
Due to monotony, if a combination causes system 

failure, the system remains failed if any node is 
removed from that combination. Again, testing the 

generated combinations leads to a complete set of 

paths, a next iteration is entered with all non-superset 
paths of the set, and so on. At some point it is found 

that the system fails on removal of any node from a 

path. Such a path is minimal by definition. The method 
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continues reducing the other paths until all in the set of 
paths are minimal. Since every path was reduced by a 

single node from one iteration to the next, it is obvious 

that the method gives the complete minimal path set. 
In addition to exploiting system monotony, method 

DMP benefits from the fact that only a coherent set of 

intact nodes can be a minimal path. Evaluation of the 
system graph hence reduces the number of simulations 

required for minimal path set detection. 
A path is split into subgraphs at the articulations of 

the path. In this way, subgraphs are generated for every 

path that exists in the path set of the previous iteration 
of DMP. If two or more subgraphs of a path cause 

system operation, all combinations are generated that 
remove as many non-articulations from that path, as 

subgraphs were deduced from it that cause system 

operation. (Two or more nodes are removed, because 
all combinations that reduce a path by one of its non-

articulations have been generated and tested in a 

preceding step.) In so doing, for the generated 
combinations to be no superset of any of the subgraphs 

of that path, each non-articulation removed from the 
path belongs to exactly one of its subgraphs. Thus, if 

any such combination causes system operation, it exists 

in the path set at the end of an iteration of DMP. It 
follows that the path set at the end of any iteration is 

complete, and hence method DMP is complete. 

Finiteness. DMP commences with a set of all nodes of 

a monotonous system as the initial path. It tests if the 

system still operates for subsets of a (the initial or 
other) path. Every subset removes one or more nodes 

from a path. Nodes are never added to a path from one 

iteration to the next. DMP repeats gradually removing 
nodes until the system fails for all subsets of a path, i.e. 

if that path is minimal. For those paths not yet 
identified as minimal, subsets of them are generated 

until they be reduced no further without causing system 

failure, i.e. until every path is minimal. Then, the 
process ends. If every single node of a system 

constitutes a minimal path, the process ends after all 
nodes are failed. Due to monotony, a system fails if all 

its nodes fail. Thus, method DMP clearly terminates. 

Effort. For illustration of the highest computing effort, 

consider a complete system graph that includes no 

articulations. Removal of any node gives a subsequent 
smaller complete graph. In addition, consider that 

every single node of the nr nodes of the system graph 
constitutes a minimal path. Then, the number of 

simulations in each iteration nLoop of DMP is the 

binomial ����, ������. DMP iterates until all nodes 

are failed, i.e. nLoop = nr. The total number of 

simulations is thus ∑ ����, �������������=0 = 2��, the 

same as a “brute force” approach needs. 
The lowest effort occurs if a system operates only 

with all its nodes intact (single minimal path that 
comprises all nodes of the system). Irrespective of the 

density of the system graph, DMP runs until iteration 

nLoop = 1 is completed. The total number of simulations 

is hence ∑ ����, ������1�����=0 = 1 + ��. 

The number of simulations required by DMP is thus 

bound by the upper limit 2�� and lower limit 1 + ��. 
Between these bounds, the actual effort depends on the 

density of the system graph, the number of minimal 

paths and number of nodes thereof. The more effort is 
saved, the lower the density of a system graph is. 

 

Figure 7. An example graph, higher density than Figure 6 

For illustration, Table 11 lists the number of 

simulations nsim for three detection cases. The number 

of edges and density (equation 1) of the respective 
graphs are denoted by E and d. The number of nodes is 

N = nr = 7 for all cases. nsim is stated for method DMP, 

as well as a method that exploits the system “monotony 
only” (no evaluation of the graph), as described. Case 2 

corresponds to the example in subsection 3.2.2. Case 1 
relates to the same graph, but the system has one less 

minimal path. Case 3 assumes the same minimal path 

set as case 2, but the graph has a higher density (Figure 
7). The comparison shows that the fewer minimal paths 

exist and the lower the density of the graph, the smaller 
effort required by DMP. With an increasing number of 

minimal paths and graph density, the effort of DMP 

approaches that of the “monotony only” method. A 

“brute force” method neither evaluates the monotony 

of a system nor its graph; it thus requires 2�� = 128 
simulations for each case. 

Table 11. Comparison of effort of minimal path set detection for three cases 

case system graph E d PS nsim 

     monotony only DMP 

1 Figure 6 8 0.381 {1, 2, 3}, {4, 5, 6, 7} 35 15 

2 Figure 6 8 0.381 {1, 2, 3}, {4, 5, 6}, {1, 3, 4, 6, 7} 40 23 

3 Figure 7 10 0.476 {1, 2, 3}, {4, 5, 6}, {1, 3, 4, 6, 7} 40 34 
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4 Conclusions 

This paper contributes a method called DMP for 

detection of the minimal path set of any fault-tolerant 
system that is represented as a multi-domain object-

oriented model. DMP can be employed throughout the 

system development process to keep the safety analysis 
up-to-date with design iterations. This is meaningful 

particularly if multi-domain object-oriented modelling 
is used already in systems engineering. DMP enhances 

the scope of application of a model while permitting all 

other simulation studies that originally motivated 
implementation of the model to be conducted. 

DMP belongs to the class of state-space simulations. 

Evaluation of the system graph reduces the number of 
simulations required, thus ensuring feasibility of DMP. 

It has been successfully tested on large, realistic 
models of safety relevant aircraft systems, as described 

in (Schallert, 2015). 

It must be beared in mind that all model-based 
safety analysis methods capture only those phenomena 

that are covered in the modelling. A model is always 
an abstraction of a real system and might hence be 

incomplete. Then again, the DMP method ensures that 

all relevant failure conditions, at least in so far as 
modelled, are captured. 
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Table 4. Combinations tested during 1
st
 iteration of detection process 

row PSprev rn isArt comb comb stored in simC sysOp nonArt 

     no yes   

1-1  {1} x {2, 3} - x - {2, 3} 

1-2  {1} x {4, 5, 6, 7} - x x {5, 7} 

1-3  {2} - {1, 3, 4, 5, 6, 7} - x x - 

1-4  {3} - {1, 2, 4, 5, 6, 7} - x x - 

1-5 {1, 2, 3, 4, {4} x {1, 2, 3} - x x {2, 3} 

1-6 5, 6, 7} {4} x {5, 6, 7} - x - {5, 7} 

1-7  {5} - {1, 2, 3, 4, 6, 7} - x x - 

1-8  {6} x {1, 2, 3, 4, 5} - x x {2, 3, 5} 

1-9  {6} x {7} - x - {7} 

1-10  {7} - {1, 2, 3, 4, 5, 6} - x x - 
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Table 5. Combinations tested during 1

st
 iteration that remove two non-articulations from PSprev[1, :] 

row PSprev rn comb comb stored in simC sysOp 

    no yes  

1-11  {2, 5} {1, 3, 4, 6, 7} - x x 

1-12 {1, 2, 3, 4, {2, 7} {1, 3, 4, 5, 6} - x x 

1-13 5, 6, 7} {3, 5} {1, 2, 4, 6, 7} - x - 

1-14  {3, 7} {1, 2, 4, 5, 6} - x x 

 
Table 7. Combinations tested during 2

nd
 iteration of detection process 

row PSprev rn isArt comb comb stored in simC sysOp nonArt 

     no yes   

2-1  {1} - {2, 3} ⊆{2, 3} - - - 

2-2 {1, 2, 3} {2} - {1, 3} - x - - 

2-3  {3} - {1, 2} ⊆{1, 2, 4, 6, 7} - - - 

2-4  {1} x {2} ⊆{1, 2, 4, 6, 7} - - - 

2-5  {1} x {4, 5, 6} - x x {5, 6} 

2-6  {2} - {1, 4, 5, 6} - x x - 

2-7 {1, 2, 4, 5, 6} {4} x {1, 2} ⊆{1, 2, 4, 6, 7} - - - 

2-8  {4} x {5, 6} ⊆{5, 6, 7} - - - 

2-9  {5} - {1, 2, 4, 6} ⊆{1, 2, 4, 6, 7} - - - 

2-10  {6} - {1, 2, 4, 5} - x - - 

2-11  {1} x {3} ⊆{2, 3} - - - 

2-12  {1} x {4, 5, 6} exists in simC - x - 

2-13  {3} - {1, 4, 5, 6} exists in simC - x - 

2-14 {1, 3, 4, 5, 6} {4} x {1, 3} exists in simC - - - 

2-15  {4} x {5, 6} ⊆{5, 6, 7} - - - 

2-16  {5} - {1, 3, 4, 6} - x - - 

2-17  {6} - {1, 3, 4, 5} - x - - 

2-18  {1} x {3} ⊆{2, 3} - - - 

2-19  {1} x {4, 6, 7} ⊆{1, 2, 4, 6, 7} - - - 

2-20  {3} - {1, 4, 6, 7} ⊆{1, 2, 4, 6, 7} - - - 

2-21 {1, 3, 4, 6, 7} {4} x {1, 3} exists in simC - - - 

2-22  {4} x {6, 7} ⊆{5, 6, 7} - - - 

2-23  {6} x {1, 3, 4} - x - {3} 

2-24  {6} x {7} ⊆{5, 6, 7} - - - 

2-25  {7} - {1, 3, 4, 6} exists in simC - - - 

2-26  {4} - {5, 6, 7} ⊆{5, 6, 7} - - - 

2-27  {5} - {4, 6, 7} ⊆{1, 2, 4, 6, 7} - - - 

2-28 {4, 5, 6, 7} {6} x {4, 5} - x - {4, 5} 

2-29  {6} x {7} ⊆{5, 6, 7} - - - 

2-30  {7} - {4, 5, 6} exists in simC - x - 

 
Table 9. 3

rd
 iteration of detection process (no combinations tested) 

row PSprev rn isArt comb comb stored in simC sysOp nonArt 

     no yes   

3-1  {4} - {5, 6} ⊆{5, 6, 7} - - - 

3-2 {4, 5, 6} {5} - {4, 6} ⊆{1, 3, 4, 6} - - - 

3-3  {6} - {4, 5} ⊆{1, 2, 4, 5} - - - 
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