
Automated Safety Analysis by Minimal Path Set Detection for

Multi-Domain Object-Oriented Models

Christian Schallert

Institute of System Dynamics and Control, German Aerospace Centre (DLR), Christian.Schallert@dlr.de

Abstract

This paper describes, exemplifies and substantiates a
method for detection of the minimal path set of any
fault-tolerant technical system that is represented as a

multi-domain object-oriented model. Thus, the method

automatically performs a safety or reliability analysis
of the system.

Keywords: safety analysis, reliability analysis, minimal
path set, graph algorithms, modelling of failures,

failure probability

1 Introduction

Safety and reliability are essential in transport aircraft
design and operation, as well as other technical areas.

Safety analyses are therefore an inherent part of the

complex process of aircraft and on-board systems
development. In systems development, multi-domain

object-oriented modelling and simulation have now
become the state-of-the-art.

This paper describes a method that integrates safety

or reliability analysis with multi-domain object-
oriented modelling. In essence, the method

automatically detects the minimal path set of any fault-
tolerant technical system. The method is based on the

simulation of normal behaviour, degradation and

failure of a system. Thus, modelling of failures is
supplemented to component models from generic

libraries, e.g. the Modelica Standard Library, that

typically represent only normal, intact behaviour.
Other approaches to automated safety or reliability

analysis based on multi-domain object-oriented
modelling exist. A model-based diagnosis approach

has been described by (Bunus, Lunde, 2008) that uses

constraints (inequalities) instead of differential
equations. It is particularly dedicated to diagnosing

systems, i.e. detecting and isolating faults. Another
approach described by (Papadopoulos et al., 2001)

performs semi-automatic fault-tree synthesis based on

fault annotations included in the components of a
system model.

The method described in this paper differs from the

existing approaches, in so far that it uses differential-
algebraic equations and modelling of failures. It thus

permits the conducting of all other simulation studies
that initially motivated the implementation of a model,

as well as it ensures a consistent safety analysis due to
the modelling, not just annotating, of failures. The goal

of the method is to improve the development process
of fault-tolerant, safety-critical systems.

2 Modelling Approach

This section refers to the approach selected for the

modelling of fault-tolerant systems and the additions

necessary to enable automated safety analysis.

2.1 Modelling of Failures

The proposed minimal path set detection method
requires that failure of a system can be simulated in

addition to its normal behaviour. Thus, the modelling
has to be supplemented by equations that reflect

failures of system components and, if applicable, by

operating logics that determine how a system reacts to
the occurrence of component failures.

Model parameter values are changed in order to

represent a failure. In doing so, the model equations
remain the same (structure-invariant approach).

Corresponding examples of aircraft on-board system
models including component failures, e.g. electrical

open circuit, mechanical disconnection or loss of

hydraulic pressure, are provided in (Schallert, 2008,
2011, 2014). The proposed detection method activates

component failures by directly accessing the relevant
model parameters. Alternatively, a universal fault

triggering network described by (van der Linden, 2014)

can be used for activation of failures.
Provided that the preconditions (see subsection

3.1.2) are met, the detection method can be used also if

the structure of the model equations is changed to
represent failures. Such a structure-variant, multi-mode

approach is described by (Elmqvist et al., 2014).

Component failure rates �� are stored in each

component model that includes failures. Since the ��
values are used only for post-processing (see equation
2), they can be inserted also as custom annotations; a

concept described by (Zimmer et al., 2014).

2.2 Indication of System Status

Safety or reliability assessment requires the analyst to
define criteria that indicate if a system operates

normally or if it fails. Such criteria have to be

DOI
10.3384/ecp15118565

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

565

implemented in a system model, in order to compute a

sysOp output signal that indicates system operation.

In case of a flight control surface actuation system,

such as described in (Schallert, 2014), sysOp is

computed by comparing the actual position or rate of

the controlled surface with the command (model
input). The capability of the system to follow

commands is simulated by the minimal path set
detection method for various combinations of intact

and failed components. In doing so, sysOp is evaluated

for correlation with the respective component states.

3 A Method for Minimal Path Set Detection

In this section a method is described that solves the

problem of determining the failure probability of a

system by detecting its minimal path set. The method is
called DMP. It draws on a representation of the system

model object structure as a graph and on simulation.

Minimal path set analysis generally assumes that a
system and its components are two-state, intact or

failed, as explained in section 2.3 of (Birolini, 2007).
The DMP method is a state space simulation. The

state space, in this context, denotes the set of all

combinations of intact and failed components of a
system to be examined for detection of its minimal

path set. Evaluation of the system graph reduces the
size of the state space and hence the number of

simulations required.

3.1 Definitions and Preparations

3.1.1 Definitions

Definitions are provided of the terms used in the
following for the DMP method:

Set. A defined collection of distinct objects, e.g. the
components of a system.

Subset. A is a subset of B, A ⊆ B, if every object of A is

also an object of B, e.g. {1, 2, 3} ⊆ {1, 2, 3}. If A is a

subset of but unequal to B, then A is a proper subset of

B, A ⊂ B, e.g. {1, 2} ⊂ {1, 2, 3}.

Superset. A is a superset of B, A ⊇ B, if every object of

B is also an object of A, e.g. {1, 2, 3} ⊇ {1, 2, 3}. If A

is a superset of but unequal to B, then A is a proper

superset of B, A ⊃ B, e.g. {1, 2, 3} ⊃ {1, 2}.

Difference set. A \ B denotes the set of elements that are

members of A but not of B, e.g. {1, 2, 3} \ {2} =

{1, 3}, or {1, 2, 3} \ {4} = {1, 2, 3}.

Component. A distinct element of a system. In this

paper, components are also called nodes.

Combination. A set of intact components of a system.

Path. A set of intact components that causes a system
to operate.

S-T path. A Source-to-Target path in a graph.

Path set. A set of paths of a system.

Minimal path. A path that cannot be reduced without
causing system failure.

Minimal path set. The set of all minimal paths of a

system.

Graph. A representation of a set of objects, e.g. the

components (nodes) of a system, and of the

connections between them.

Node. An object in a graph. Nodes are also called

components in this paper.

Edge. A link that connects a pair of nodes in a graph.

Articulation. A node in a graph (or path) that, if

removed, disconnects the graph (or path) into several
subgraphs.

Subgraph. A part of a graph whose set of nodes and set
of edges are subsets of those of the graph, the set of

edges being restricted to the subset of nodes.

Density. The density d of a graph is generally, e.g. in
(Diestel, 2010), defined by �(�,�) = 2� �(� − 1)⁄ (1)

where N and E denote the numbers of nodes and edges
of the graph, respectively.

Probability computation. The probability of system
operation or failure is computed from the system’s

minimal path set in applying the reliabilities of its
components. Let Ci denote the intact state of

component i. Then, the probability of occurrence P of a

minimal path MP is, see (Meyna, Pauli, 2003), �(��) = �(�1 ∧ �2 ∧…) ∀�� ∈ �� �(��) = � �(��)��∈�� = � ��(�)��∈�� , �� = �−��� (2)

with the component reliabilities Ri, failure rates λi and

exposure time t. Exponentially distributed lifetimes are

assumed. Other lifetime models, e.g. Weibull
distribution, can be used as well. The probability of

system operation Rsys(t) is computed from the

probabilities of the minimal paths by ����(�) = �(��1 ∨…∨ ���)

= ������� −�
�=1 � � ����� ∧ �����

�=�+1 + . . .

�−1
�=1

+(−1)�+1 ⋅ �(��1 ∧ ��2 ∧…∧ ���)

(3)

where r is the number of all minimal paths in the set.

Equation 3 is evaluated for illustration at the end of
subsection 3.2.2.

3.1.2 Properties of Minimal Paths and Requirements

for Detection

This subsection explains the assumptions and
requirements that apply to the minimal path set

detection method DMP described in section 3.2:

1. The system behaves monotonously. This refers to
a system that operates if all its components are
intact and fails if all components fail. If the system

Automated Safety Analysis by Minimal Path Set Detection for Multi-Domain Object-Oriented Models

566 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118565

operates while not all components are intact, it
continues operating if any further component

becomes intact. Conversely, if the system has

failed, it remains failed if any further component
fails. This definition of monotony is common in

safety analysis. For instance, it can be found in

section 14.2 of (Meyna, Pauli, 2003).

2. Every real world component is represented by one

model object and by one node in a corresponding
graph. No component is represented by two or

more model objects or nodes.

DMP relies on a representation of the object structure

of the system model as a graph. Nodes of the graph
represent components, and edges the connections

between components. The establishing of a graph is

described in subsection 3.1.3. The properties of
minimal paths, and in particular their situation in the

graph, are explained in the following, which then
proceeds to further requirements for DMP.

Depending on the system model and, if applicable,

the marking of sources (S) and targets (T) in the
corresponding graph, some S-T paths are minimal

paths. This is true, for instance, for the electric network
models shown in (Schallert, 2008, 2011), where also

related detection methods are described. In general,

however, what is known is only that a minimal path
consists of one or more connected nodes.

This is explained by Figure 1 that depicts a part of
an aircraft’s flight control surface actuation system

model and its accompanying graph. The edges of the
graph correspond to the interfaces that exchange

power, material or signals among the components

(nodes) of a system. This exchange among
neighboured nodes enables a system to operate. No

other nodes are situated between any of those nodes

that exchange power, material or signals and hence
belong to a minimal path. Thus, only a coherent set of

nodes can be a minimal path. The following defines a
coherent set of nodes:

Definition 1. A set of nodes in a graph is coherent if
any two nodes of the set are connected through a series

of edges and through only those nodes that belong to

the set.

Figure 2 shows coherent and incoherent sets of

nodes (marked blue) for illustration. An S-T path, such
as (c), is a special case of a coherent set of nodes.

Figure 2. Coherent (a), (b), (c) and incoherent sets of

nodes (d), (e) in a graph

Coherence (interconnection) of intact nodes in the

system graph is a precondition for a minimal path.
Removing a node from a minimal path interrupts the

exchange of power, material or signals among the

nodes of the minimal path. If no other minimal paths
exist, the system fails. If the system operates with an

incoherent set of intact nodes, nodes can be removed
from the set, i.e. fail, without interrupting the exchange

of power etc. Such a set of nodes is therefore a path but

not a minimal path. Thus, the third assumption for
method DMP is:

Figure 1. Exchange of power and signals across the edges in a coherent set of nodes

Session 8A: Aerospace Applications 2

DOI
10.3384/ecp15118565

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

567

3. Only a coherent set of intact nodes in a system
graph can be a minimal path.

Because not every coherent set of intact nodes is a
minimal path, the system model is simulated to

determine which ones are actually minimal paths.

3.1.3 Graph Representation of Multi-Domain Object-

Oriented Models

A graph is defined by its adjacency list (array AL). In

AL, each row corresponds to a node of the graph. The

neighbours of a node are stored in the respective rows

of AL, as will be illustrated. If more than one

connection exists between two components of a model,

this is reflected by a single edge in the graph. (That is,

in each row of AL, any node is stored not more than

once.) It is only relevant that any two nodes of the

graph are connected, but it is not important whether the
two nodes are connected by one or more than one edge.

Additionally, the interface types are not evaluated by
method DMP, so they are not reflected in the graph.

Figure 3. Components and connections in a multi-domain

object-oriented model

For illustration, the adjacency list is indicated for a part

of the system model depicted in Figure 1. Figure 3 (a)

shows the component (node) and interface names, and
the indices in (b). The numbering of nodes – encircled

in (b) – corresponds to Figure 1. The algorithm that

actually prepares an adjacency list is described in
subsection 3.1.3 of (Schallert, 2015).

The connections via mechanical flanges, hydraulic
ports, electric pins etc. are declared in the model by the

connect() statements below. They are expressed in

terms of the component and interface names (left
column), and in terms of component and interface

indices (right column).

1.
connect(POB1.flange_a,
Motor1.flange);

(1.1, 2.3)

2.
connect(Motor1.port_a,
Valve1.port_A);

(2.1, 3.1)

3.
connect(Motor1.port_b,
Valve1.port_B);

(2.2, 3.2)

4.
connect(POB1.p,
Computer1.p_B);

(1.2, 4.5)

5.
connect(Valve1.p,
Computer1.p_V);

(3.3, 4.4)

6.
connect(Computer1.Sw1,

Up1.p);
(4.2, 5.1)

7. connect(Up1.p, Down1.p); (5.1, 6.1)

8.
connect(Computer1.Up1,
Up1.n);

(4.1, 5.2)

9.
connect(Computer1.Down1,
Down1.n);

(4.3, 6.2)

A special case occurs if more than one node is directly
or indirectly connected to one and the same interface of

a node, as happens for the 6
th

 and 7
th

 connections of the

example: Computer1.Sw1 (4.2) is connected to

Up1.p (5.1), and in turn Up1.p (5.1) is connected

to Down1.p (6.1). Actually, there is a direct

connection between (4.2) and (6.1). It only appears

to be indirect, across (5.1), because each connect()

statement links exactly two nodes. To reflect that a

direct connection exists between (4.2) and (6.1), an

auxiliary node (14) is introduced. Auxiliary nodes do

not represent any real or model object; rather, they are

introduced to ensure that coherent sets of nodes are

correctly detected by method DMP. An auxiliary node

is stored as an additional row in the adjacency list AL.

Table 1 specifies the adjacency list by the node
indices. Figure 4 shows the corresponding graph.

Table 1. Adjacency list AL for Figure 3 (b)

 1 2 4

 2 1 3

 3 2 4

 4 1 3 5 6 14

 5 4 14

 6 4 14

14 4 5 6

Figure 4. Graph for Figure 3 (b)

Automated Safety Analysis by Minimal Path Set Detection for Multi-Domain Object-Oriented Models

568 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118565

3.2 Detection of Minimal Paths

Method DMP is capable of detecting the minimal path
set if conditions 1, 2 and 3 defined in subsection 3.1.2

are fulfilled. The detection starts with all system
components (nodes) intact. Nodes are then

successively removed from the system graph, which

corresponds to component failures. The model is
simulated to identify if the system still operates or fails.

Articulations can occur in the graph that, if

removed, cause disconnection of the graph into several
subgraphs. Since only a coherent set of intact nodes

can be a minimal path, splitting up the graph at
articulations reduces the state space and thus the

number of simulations. The lower the density of a

system graph is, the more articulations occur within it
and thus fewer simulations are required. For

completeness, method DMP allows that articulations
can also belong to a minimal path.

3.2.1 Detection Algorithm

Figure 5 shows a flow chart of the detection algorithm.
It consists of a preparation phase (steps DMP.1 - 4) and

the actual, iterative detection process (steps DMP.5 -

17). Steps DMP.3, 8, 11 - 16 refer to lower level
algorithms that are described in detail, including code,

in (Schallert, 2015). The meaning of the symbols used

is as follows:

nr number of all components that can

fail of a system

nLoop iteration counter of detection process

rn node(s) to be removed from a path of

array PSprev

PS, PSprev arrays of path sets in the actual and

previous iteration, respectively, of

the detection process

isMinPS,
isMinPSprev

Boolean arrays that store if a path in

array PS or PSprev is minimal

np, npprev number of paths stored in PS and
PSprev

SF array for storing combinations that

cause system failure

nsf number of combinations stored in

array SF

In the preparation phase, the necessary data are

retrieved from the system model (step DMP.1). Then,
the model is simulated to check if the system operates

for the set of initially intact components (nodes). To

this end, the model output sysOp is evaluated. A

monotonous system will operate, and the procedure is
continued only in this case (step DMP.2). If the system

fails, no minimal path can be detected, and the process

is aborted. Next, a graph (adjacency list) of the system
model is established (step DMP.3, see 3.1.3). Then,

several arrays are initialised (step DMP.4) for the

detection process.

At the start of an iteration, the paths detected so far,
their number, as well as the information whether they

are minimal are assigned to PSprev, npprev and

isMinPSprev. Arrays PS, isMinPS and the counter np

are reset (step DMP.5). Then, nLoop is increased by one.

Next, combinations are generated from the paths in

PSprev. If the ith path, denoted by PSprev[i, :], is

minimal (checked in step DMP.7), then it is not further
reduced, because any subset of a minimal path causes

system failure. If the ith path is not minimal, then all

subsets are generated that remove one intact node rn

from the path (step DMP.8): PSprev[i, :] \ {rn} for all

rn ∈ PSprev[i, :] and rn ∈ {1, nr}. If node nr is an

articulation of path PSprev[i, :], then the corresponding

subgraphs of PSprev[i, :] are generated. Articulations

and subgraphs are determined by an algorithm based
on depth-first search described by (Tarjan, 1972).

Along with each subgraph, the non-articulations of

PSprev[i, :] that also belong to the respective subgraph

are stored. This information is used later, in step

DMP.13, to generate combinations that remove two or
more non-articulations from a path, dependent on the

simulation result (step DMP.11). Due to monotony of

the system, any subset of a path is generated only if it

is not a subset of any combination stored in SF that

causes system failure. Thus, if no subset is generated

from path PSprev[i, :] in step DMP.8, then the system

fails for every subset of this path; it is minimal and is

marked by isMinPSprev[i] := true. The generation of

subsets of paths ends after every path in PSprev has

been processed, i.e. i > npprev (step DMP.10).

Next (step DMP.11), the model is simulated for
every generated combination in order to determine if

the system is operating. From the simulation result

(sysOp), it is first determined which paths in PSprev are

minimal. If a path is minimal, it is stored in PS and

marked as minimal in isMinPS. Then, dependent on

whether they cause system operation or failure, the

combinations are stored either in PS or in SF, and the

respective counter (np or nsf) is increased (step

DMP.12).

For those paths in PS that were established due to an

articulation and that are no superset of any other path,
combinations are generated that remove two or more

non-articulations from the original path in PSprev (step

DMP.13). This is necessary since articulations can also

belong to a minimal path. The system model is then

simulated for the generated combinations. Dependent
on the simulation result, a combination is stored either

in PS or SF (steps DMP.14 and 15).

Next, array PS is tidied up by deleting those paths

that are a superset of any other path (step DMP.16). A
path can be minimal only if it is not a superset of any

other path. If every of the np paths in PS is marked as

minimal (step DMP.17), the detection is complete and

Session 8A: Aerospace Applications 2

DOI
10.3384/ecp15118565

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

569

the process ends. Otherwise, the process continues with

a new iteration at step DMP.5.

3.2.2 A Minimal Path Set Detection Example

The detection algorithm DMP is illustrated by means

of the example graph shown in Figure 6. It is assumed
that this graph is deduced from the object-oriented

model of any technical system. The minimal path set is
assumed as PS = {{1, 2, 3}, {4, 5, 6}, {1, 3, 4, 6, 7}}.

Figure 6. An example graph

Figure 5. Flow chart of minimal path set detection algorithm DMP

Automated Safety Analysis by Minimal Path Set Detection for Multi-Domain Object-Oriented Models

570 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118565

The meaning of the symbols used is as follows, as yet
not defined:

isArt indicates if rn is an articulation of the

respective path

comb generated combination of intact nodes

simC array of generated combinations, input for

simulations of the system model

sysOp array of simulation result (system operates

or not) for every combination in simC

nonArt non-articulation nodes of a path in PSprev

that also belong to a generated subgraph

The detection proceeds as follows. In the tables,

column “row” indicates the progress of the algorithm

in terms of “nLoop” - “number of comb”, e.g. 0-1

denotes combination 1 of iteration 0 (nLoop = 0).

In the preparation phase it is checked if the system

operates when all its components are intact (step

DMP.2 in Figure 5). Thus, the simulation input simC is

as indicated below in Table 2. At this initial stage, no

path has yet been detected and PSprev is empty.

The system operates, so the set of initially intact nodes

is stored as a single, non-minimal path (np = 1) in PS

(step DMP.4). SF is empty (nsf = 0), Table 3.

Table 3. Path set after initial stage of detection process

PS isMinPS SF

{1, 2, 3, 4, 5, 6, 7} - -

The process continues with iteration one (nLoop = 1).

The path data are assigned to PSprev, isMinPSprev and

npprev. PS, isMinPS and np are reset (step DMP.5).

Combinations are then generated from path PSprev[1, :]

as follows (step DMP.8): Node 1 is an articulation. The
path splits into two subgraphs {2, 3} and {4, 5, 6, 7}

due to the removal of node 1. The non-articulations of

the original path PSprev[1, :] that also belong to the

respective subgraphs are {2, 3} and {5, 7}. Node 2 is

not an articulation, thus a combination is generated by

removing node 2 from PSprev[1, :], and likewise for

nodes 3, 5 and 7. Altogether, ten combinations are
generated for simulation of the system model, Table 4.

The simulation result of step DMP.11 (column

sysOp) indicates that path PSprev[1, :] is not minimal,

because the system operates for subsets of it, namely
for those in rows 1-2, 1-3, 1-4, 1-5, 1-7, 1-8 and 1-10.

These combinations are stored as paths in PS, np = 7.

The other combinations in rows 1-1 and 1-6 are stored

in SF, nsf = 2 (step DMP.12). The one in row 1-9,

{7}, is not stored in SF as it is a subset of {5, 6, 7}.

At this stage, two of the seven paths in PS are not

supersets of any other path, namely rows 1-2 and 1-5 in

Table 4 (marked bold). Other paths can exist that

include some of the articulations of the original path

PSprev[1, :]. To assure that such paths are detected,

further combinations that are no superset of any path in

PS - in this case {4, 5, 6, 7} and {1, 2, 3} - must be

generated (step DMP.13). Such combinations remove
as many non-articulations from the original path as

non-superset paths were deduced from it, namely two

(rows 1-2 and 1-5) in the case of PSprev[1, :]. To avoid

generating supersets, one node of every set of non-

articulations, {5, 7} and {2, 3}, is removed from the
original path, respectively. Thus, the combinations

PSprev[1, :] \ {2, 5}, PSprev[1, :] \ {2, 7}, PSprev[1, :] \

{3, 5} and PSprev[1, :] \ {3, 7} are generated, as listed

in rows 1-11 through 1-14, Table 5.

Due to the simulation result, three more paths are

stored in PS, np = 7 + 3 = 10, and one more

combination in SF, nsf = 2 + 1 = 3 (steps DMP.14 and

15). The total number of simulations so far is nsim =

1 + 10 + 4 = 15. Supersets of paths are removed from

PS, which leads to np = 5 paths remaining (in Table 6)

after completion of step DMP.16.

Table 6. Path set PS and combinations that cause system

failure SF, as existent after 1
st
 iteration of process

PS isMinPS SF

{1, 2, 3} - {1, 2, 4, 6, 7}

{1, 2, 4, 5, 6} - {2, 3}

{1, 3, 4, 5, 6} - {5, 6, 7}

{1, 3, 4, 6, 7} -

{4, 5, 6, 7} -

Since none of the paths in PS is marked as minimal

(step DMP.17), the process continues with a second

iteration (nLoop = 2). The path data are assigned to

PSprev, isMinPSprev and npprev. PS, isMinPS and np

are reset (step DMP.5). Then, combinations are

generated (step DMP.8) from each of the npprev = 5

paths in PSprev as listed in Table 7. Three combinations

are generated from PSprev[1, :] = {1, 2, 3}, but only one

is stored in simC for simulation. The other two are not

stored in simC because they are a subset of a

combination in SF, as indicated in rows 2-1 and 2-3. If

a combination causes system failure, every subset of it

causes system failure as well due to system monotony.

Any combination is stored only once in simC, as

indicated in row 2-12, for instance. Eight combinations
are stored altogether for simulation in step DMP.11.

Table 2. Combinations tested (by simulation of system model) at initial stage of detection process

row PSprev rn isArt comb comb stored in simC sysOp nonArt

 no yes

0-1 - - - {1, 2, 3, 4, 5, 6, 7} - x x -

Session 8A: Aerospace Applications 2

DOI
10.3384/ecp15118565

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

571

The simulation result (column sysOp in Table 7)

indicates that PSprev[1, :] = {1, 2, 3} and PSprev[4, :] =

{1, 3, 4, 6, 7} are minimal, because the system fails for

every respective subset. These paths are stored in PS

and marked as minimal in isMinPS (step DMP.12). In

addition, two non-minimal paths, {4, 5, 6} in row 2-5

and {1, 4, 5, 6} in row 2-6, are stored in PS; the latter

will be removed in step DMP.16.

It is not necessary in this iteration to generate

combinations that remove two or more non-

articulations from any path in PSprev. The reason is: At

most one subgraph that causes system operation is

deduced from any path in PSprev. In the case of

PSprev[2, :] = {1, 2, 4, 5, 6}, subgraphs {2}, {4, 5, 6}

and {1, 2}, {5, 6} are generated due to articulations 1

and 4, respectively. The system operates only for {4, 5,
6}. In order to generate every combination from

PSprev[2, :] that is no superset of {4, 5, 6}, it is

sufficient to remove one non-articulation from

PSprev[2, :]. These combinations are generated already

in step DMP.8, as Table 7 shows (rows 2-9 and 2-10).

Thus, np = 4 paths are stored in PS of which two are

minimal. nsf = 3 + 3 = 6 combinations are stored in

SF. The total number of simulations so far is nsim =

15 + 8 = 23. np = 3 paths remain in PS (see Table 8)

after removal of supersets in step DMP.16.

Table 8. Path set PS and combinations that cause system

failure SF, as existent after 2
nd

 iteration of process

PS isMinPS SF

{1, 2, 3} x {1, 2, 4, 5}

{1, 3, 4, 6, 7} x {1, 2, 4, 6, 7}

{4, 5, 6} - {1, 3, 4, 5}

 {1, 3, 4, 6}

 {2, 3}

 {5, 6, 7}

Since not all paths are marked as minimal, the process

enters a third iteration, nLoop = 3. Again, the path data

are assigned to PSprev, isMinPSprev and npprev. PS,

isMinPS and np are reset. Then, combinations are

generated only for the non-minimal path PSprev[3, :] =

{4, 5, 6} in step DMP.8. As Table 9 shows, every

generated combination is a subset of any combination

in SF. This means that PSprev[3, :] is also minimal, and

no further simulations are necessary. Thus, the process

is complete. The minimal path set of the example
system (Figure 6) is correctly detected:

Table 10. Minimal path set detected after 3
rd

 iteration

PS isMinPS

{1, 2, 3} x

{1, 3, 4, 6, 7} x

{4, 5, 6} x

Next, the probability of system operation (or failure) is
computed. For illustration, equation 3 is evaluated for

the detected minimal path set. With the component

reliabilities Ri = Ri(t), the probabilities of the minimal
paths are: �(��1) = �1�2�3, �(��2) = �1�3�4�6�7, �(��3) = �4�5�6.

For the 2
nd

 order intersections, the probabilities are: �(��1 ∧ ��2) = �1�2�3�4�6�7, �(��1 ∧ ��3) = �1�2�3�4�5�6, �(��2 ∧ ��3) = �1�3�4�5�6�7.

The probability of the single 3
rd

 order intersection is: �(��1 ∧ ��2 ∧ ��3) = �1�2�3�4�5�6�7.

Employing these products, equation 3 reads ����(�) = �1�2�3 + �1�3�4�6�7 + �4�5�6 −(�1�2�3�4�6�7 + �1�2�3�4�5�6

+�1�3�4�5�6�7) + �1�2�3�4�5�6�7.

If it is assumed that λi = 10
-2

/h and t = 1h, thus R = Ri =

0.990, then the probability of system operation is
Rsys(1h) = 2R

3
 + R

5
 - 3R

6
 + R

7
 = 0.99922 or likewise,

the probability of system failure is Fsys(1h) = 1 -

Rsys(1h) = 7.8⋅10
-4

.

3.2.3 Proof and boundary effort of detection method

The minimal path set detection method DMP gives a

complete result when applied to any multi-domain

object-oriented system model that fulfills the
conditions 1, 2 and 3 stated in subsection 3.1.2. In

addition, the method is finite which means that it

terminates when applied to any such model. The
completeness and finiteness are proven in the

following. The upper and lower bounds of the required
computing effort are also derived.

Completeness. Consider a detection method that

merely exploits the monotony of the analysed system.
It starts with a set of all nodes as the initial path. Every

combination is generated that removes a single node
from the path. It is tested for each (by simulation of the

model) if the system operates. Those combinations that

cause system operation constitute a set of paths. In the
set of paths, only those are kept that are no superset of

any other, because only a non-superset path can be

minimal. Thus, a complete path set of the system exists
at the end of an iteration of the detection method.

A next iteration is entered. All combinations are
generated that remove a single node from every path in

the set of the previous iteration. In so doing, subsets of

combinations that cause system failure are omitted.
Due to monotony, if a combination causes system

failure, the system remains failed if any node is
removed from that combination. Again, testing the

generated combinations leads to a complete set of

paths, a next iteration is entered with all non-superset
paths of the set, and so on. At some point it is found

that the system fails on removal of any node from a

path. Such a path is minimal by definition. The method

Automated Safety Analysis by Minimal Path Set Detection for Multi-Domain Object-Oriented Models

572 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118565

continues reducing the other paths until all in the set of
paths are minimal. Since every path was reduced by a

single node from one iteration to the next, it is obvious

that the method gives the complete minimal path set.
In addition to exploiting system monotony, method

DMP benefits from the fact that only a coherent set of

intact nodes can be a minimal path. Evaluation of the
system graph hence reduces the number of simulations

required for minimal path set detection.
A path is split into subgraphs at the articulations of

the path. In this way, subgraphs are generated for every

path that exists in the path set of the previous iteration
of DMP. If two or more subgraphs of a path cause

system operation, all combinations are generated that
remove as many non-articulations from that path, as

subgraphs were deduced from it that cause system

operation. (Two or more nodes are removed, because
all combinations that reduce a path by one of its non-

articulations have been generated and tested in a

preceding step.) In so doing, for the generated
combinations to be no superset of any of the subgraphs

of that path, each non-articulation removed from the
path belongs to exactly one of its subgraphs. Thus, if

any such combination causes system operation, it exists

in the path set at the end of an iteration of DMP. It
follows that the path set at the end of any iteration is

complete, and hence method DMP is complete.

Finiteness. DMP commences with a set of all nodes of

a monotonous system as the initial path. It tests if the

system still operates for subsets of a (the initial or
other) path. Every subset removes one or more nodes

from a path. Nodes are never added to a path from one

iteration to the next. DMP repeats gradually removing
nodes until the system fails for all subsets of a path, i.e.

if that path is minimal. For those paths not yet
identified as minimal, subsets of them are generated

until they be reduced no further without causing system

failure, i.e. until every path is minimal. Then, the
process ends. If every single node of a system

constitutes a minimal path, the process ends after all
nodes are failed. Due to monotony, a system fails if all

its nodes fail. Thus, method DMP clearly terminates.

Effort. For illustration of the highest computing effort,

consider a complete system graph that includes no

articulations. Removal of any node gives a subsequent
smaller complete graph. In addition, consider that

every single node of the nr nodes of the system graph
constitutes a minimal path. Then, the number of

simulations in each iteration nLoop of DMP is the

binomial ����, ������. DMP iterates until all nodes

are failed, i.e. nLoop = nr. The total number of

simulations is thus ∑ ����, �������������=0 = 2��, the

same as a “brute force” approach needs.
The lowest effort occurs if a system operates only

with all its nodes intact (single minimal path that
comprises all nodes of the system). Irrespective of the

density of the system graph, DMP runs until iteration

nLoop = 1 is completed. The total number of simulations

is hence ∑ ����, ������1�����=0 = 1 + ��.

The number of simulations required by DMP is thus

bound by the upper limit 2�� and lower limit 1 + ��.
Between these bounds, the actual effort depends on the

density of the system graph, the number of minimal

paths and number of nodes thereof. The more effort is
saved, the lower the density of a system graph is.

Figure 7. An example graph, higher density than Figure 6

For illustration, Table 11 lists the number of

simulations nsim for three detection cases. The number

of edges and density (equation 1) of the respective
graphs are denoted by E and d. The number of nodes is

N = nr = 7 for all cases. nsim is stated for method DMP,

as well as a method that exploits the system “monotony
only” (no evaluation of the graph), as described. Case 2

corresponds to the example in subsection 3.2.2. Case 1
relates to the same graph, but the system has one less

minimal path. Case 3 assumes the same minimal path

set as case 2, but the graph has a higher density (Figure
7). The comparison shows that the fewer minimal paths

exist and the lower the density of the graph, the smaller
effort required by DMP. With an increasing number of

minimal paths and graph density, the effort of DMP

approaches that of the “monotony only” method. A

“brute force” method neither evaluates the monotony

of a system nor its graph; it thus requires 2�� = 128
simulations for each case.

Table 11. Comparison of effort of minimal path set detection for three cases

case system graph E d PS nsim

 monotony only DMP

1 Figure 6 8 0.381 {1, 2, 3}, {4, 5, 6, 7} 35 15

2 Figure 6 8 0.381 {1, 2, 3}, {4, 5, 6}, {1, 3, 4, 6, 7} 40 23

3 Figure 7 10 0.476 {1, 2, 3}, {4, 5, 6}, {1, 3, 4, 6, 7} 40 34

Session 8A: Aerospace Applications 2

DOI
10.3384/ecp15118565

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

573

4 Conclusions

This paper contributes a method called DMP for

detection of the minimal path set of any fault-tolerant
system that is represented as a multi-domain object-

oriented model. DMP can be employed throughout the

system development process to keep the safety analysis
up-to-date with design iterations. This is meaningful

particularly if multi-domain object-oriented modelling
is used already in systems engineering. DMP enhances

the scope of application of a model while permitting all

other simulation studies that originally motivated
implementation of the model to be conducted.

DMP belongs to the class of state-space simulations.

Evaluation of the system graph reduces the number of
simulations required, thus ensuring feasibility of DMP.

It has been successfully tested on large, realistic
models of safety relevant aircraft systems, as described

in (Schallert, 2015).

It must be beared in mind that all model-based
safety analysis methods capture only those phenomena

that are covered in the modelling. A model is always
an abstraction of a real system and might hence be

incomplete. Then again, the DMP method ensures that

all relevant failure conditions, at least in so far as
modelled, are captured.

Acknowledgements

This research has received funding from the European
Union’s 7

th
 Framework Programme (FP7/2007-2013)

for the CleanSky Joint Technology Initiative under
grant agreement CSJU-GAN-SGO-2008-001.

References

A. Birolini. Reliability Engineering – Theory and Practice

(Fifth Edition). Springer-Verlag Berlin Heidelberg, 2007.

P. Bunus, K. Lunde. Supporting Model-Based Diagnostics

with Equation-Based Object-Oriented Languages.

Proceedings of the 2
nd

 International Workshop on

Equation-Based Object-Oriented Languages and Tools

(EOOLT), pp. 121-130, Paphos, Cyprus, 2008.

R. Diestel. Graph Theory (Graduate Texts in Mathematics),

Springer-Verlag, 2010.

H. Elmqvist, S. E. Mattsson, M. Otter. Modelica extensions

for Multi-Mode DAE-Systems. Proceedings of the 10
th

International Modelica Conference, pp. 183-193, Lund,

Sweden, 2014. doi: 10.3384/ECP14096183

A. Meyna, B. Pauli. Taschenbuch der Zuverlässigkeits- und

Sicherheitstechnik. Carl Hanser Verlag München Wien,

2003. In German.

C. Schallert. Incorporation of Reliability Analysis Methods

with Modelica. Proceedings of the 6
th
 International

Modelica Conference, pp. 103-112, Bielefeld, Germany,

2008.

C. Schallert. Inclusion of Reliability and Safety Analysis

Methods in Modelica. Proceedings of the 8
th
 International

Modelica Conference, pp. 616-627, Dresden, Germany,

2011. doi: 10.3384/ECP11063616

C. Schallert. A Safety Analysis via Minimal Path Sets

Detection for Object-Oriented Models. Safety and

Reliability: Methodology and Applications (editors:

Nowakowski et al.), CRC Press/Balkema, ISBN: 978-1-

315-73697-6, 2014.

C. Schallert. Integrated Safety and Reliability Analysis

Methods for Aircraft System Development using Multi-

Domain Object-Oriented Models, 2015 (to appear).

R. Tarjan. Depth-First Search and Linear Graph Algorithms.

SIAM Journal on Computing, 1(2), pp. 146-160, 1972.

F. van der Linden. General fault triggering architecture to

trigger model faults in Modelica using a standardized

blockset. Proceedings of the 10
th
 International Modelica

Conference, pp. 427-436, Lund, Sweden, 2014. doi:

10.3384/ECP14096427

Y. Papadopoulos, J. McDermid, R. Sasse, G. Heiner.

Analysis and synthesis of the behaviour of complex

programmable electronic systems in conditions of failure.

Reliability Engineering and System Safety, Vol. 71, pp.

229 - 247, 2001.

D. Zimmer, M. Otter, H. Elmqvist, G. Kurzbach. Custom

Annotations: Handling Meta-Information in Modelica.

Proceedings of the 10
th
 International Modelica

Conference, pp. 173-182, Lund, Sweden, 2014. doi:

10.3384/ECP14096173

Table 4. Combinations tested during 1
st
 iteration of detection process

row PSprev rn isArt comb comb stored in simC sysOp nonArt

 no yes

1-1 {1} x {2, 3} - x - {2, 3}

1-2 {1} x {4, 5, 6, 7} - x x {5, 7}

1-3 {2} - {1, 3, 4, 5, 6, 7} - x x -

1-4 {3} - {1, 2, 4, 5, 6, 7} - x x -

1-5 {1, 2, 3, 4, {4} x {1, 2, 3} - x x {2, 3}

1-6 5, 6, 7} {4} x {5, 6, 7} - x - {5, 7}

1-7 {5} - {1, 2, 3, 4, 6, 7} - x x -

1-8 {6} x {1, 2, 3, 4, 5} - x x {2, 3, 5}

1-9 {6} x {7} - x - {7}

1-10 {7} - {1, 2, 3, 4, 5, 6} - x x -

Automated Safety Analysis by Minimal Path Set Detection for Multi-Domain Object-Oriented Models

574 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118565

Table 5. Combinations tested during 1

st
 iteration that remove two non-articulations from PSprev[1, :]

row PSprev rn comb comb stored in simC sysOp

 no yes

1-11 {2, 5} {1, 3, 4, 6, 7} - x x

1-12 {1, 2, 3, 4, {2, 7} {1, 3, 4, 5, 6} - x x

1-13 5, 6, 7} {3, 5} {1, 2, 4, 6, 7} - x -

1-14 {3, 7} {1, 2, 4, 5, 6} - x x

Table 7. Combinations tested during 2

nd
 iteration of detection process

row PSprev rn isArt comb comb stored in simC sysOp nonArt

 no yes

2-1 {1} - {2, 3} ⊆{2, 3} - - -

2-2 {1, 2, 3} {2} - {1, 3} - x - -

2-3 {3} - {1, 2} ⊆{1, 2, 4, 6, 7} - - -

2-4 {1} x {2} ⊆{1, 2, 4, 6, 7} - - -

2-5 {1} x {4, 5, 6} - x x {5, 6}

2-6 {2} - {1, 4, 5, 6} - x x -

2-7 {1, 2, 4, 5, 6} {4} x {1, 2} ⊆{1, 2, 4, 6, 7} - - -

2-8 {4} x {5, 6} ⊆{5, 6, 7} - - -

2-9 {5} - {1, 2, 4, 6} ⊆{1, 2, 4, 6, 7} - - -

2-10 {6} - {1, 2, 4, 5} - x - -

2-11 {1} x {3} ⊆{2, 3} - - -

2-12 {1} x {4, 5, 6} exists in simC - x -

2-13 {3} - {1, 4, 5, 6} exists in simC - x -

2-14 {1, 3, 4, 5, 6} {4} x {1, 3} exists in simC - - -

2-15 {4} x {5, 6} ⊆{5, 6, 7} - - -

2-16 {5} - {1, 3, 4, 6} - x - -

2-17 {6} - {1, 3, 4, 5} - x - -

2-18 {1} x {3} ⊆{2, 3} - - -

2-19 {1} x {4, 6, 7} ⊆{1, 2, 4, 6, 7} - - -

2-20 {3} - {1, 4, 6, 7} ⊆{1, 2, 4, 6, 7} - - -

2-21 {1, 3, 4, 6, 7} {4} x {1, 3} exists in simC - - -

2-22 {4} x {6, 7} ⊆{5, 6, 7} - - -

2-23 {6} x {1, 3, 4} - x - {3}

2-24 {6} x {7} ⊆{5, 6, 7} - - -

2-25 {7} - {1, 3, 4, 6} exists in simC - - -

2-26 {4} - {5, 6, 7} ⊆{5, 6, 7} - - -

2-27 {5} - {4, 6, 7} ⊆{1, 2, 4, 6, 7} - - -

2-28 {4, 5, 6, 7} {6} x {4, 5} - x - {4, 5}

2-29 {6} x {7} ⊆{5, 6, 7} - - -

2-30 {7} - {4, 5, 6} exists in simC - x -

Table 9. 3

rd
 iteration of detection process (no combinations tested)

row PSprev rn isArt comb comb stored in simC sysOp nonArt

 no yes

3-1 {4} - {5, 6} ⊆{5, 6, 7} - - -

3-2 {4, 5, 6} {5} - {4, 6} ⊆{1, 3, 4, 6} - - -

3-3 {6} - {4, 5} ⊆{1, 2, 4, 5} - - -

Session 8A: Aerospace Applications 2

DOI
10.3384/ecp15118565

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

575

