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Abstract 

A generic framework for mechanical modeling of 
objects that collide and have contact is presented. It can 

be used in combination with the Modelica MultiBody 
library and to model granular objects using DEM 

(Discrete Element Method). The shapes of the objects 

are given by general triangular meshes.  

Keywords: MultiBody models, Discrete Element 

Method, Collision detection, Contact handling 

1 Introduction 

Many real-world system behaviors depend on contact 

between mechanical bodies. Examples are walking, 

vehicle on a road, mechanisms in mechanical watches 
and many types of manufacturing machines.  

1.1 Earlier Modelica Based Solutions 

There have already been several developments to 

support collision handling in Modelica. In (Otter, et al 

2005) is described a solution based on a collision 
handling software called Solid. The contact force 

calculations take into account the contact patch, i.e. 
also rotational friction torque is handled. The paper 

(Oestersötebier et al, 2014) introduces non-central 

contact blocks in which the contact surfaces are 
defined. (Hofmann, 2014) discusses the use of the 

Bullet Physics Library and deepest point penetration 
for force calculations. Unfortunately this point might 

not be unique which then results in unrealistic 

simulation results. 

1.2 Discrete Element Method 

The Discrete Element Method (DEM) has a focus on 
handling many interacting objects. Typically, both 

positional and rotational degrees of freedom are 

handled, i.e. 6 DOFs per object. The geometries can be 
complex, e.g. polyhedral. Many different force models 

can be used depending on what matter is studied. 
It has been noted that simply using penetration 

depth, which is often calculated by collision packages, 

are not suited for continuous time simulation because 
of the discontinuity in the forces and where the forces 

act. DEM typically handles this by calculating 
penetration volume. See, for example, (Chen, 2012). 

(Hippman, 2003, 2013) also considers the penetration 

volume and makes force calculations based on the 
surface patches. 

1.3 Contribution 

A generic framework for mechanical modeling of 

objects that collide and have contact is presented. It can 
be used in combination with the Modelica MultiBody 

library and to model granular objects using DEM 

(Discrete Element Method). The shapes of the objects 
are given by general triangular meshes. The special 

case of sphere is also supported in order to handle tens 
thousands of objects for DEM. The contact handling is 

organized using ExternalObjects, i.e. C and C++ code. 

Each body in the scene registers its current position 
which is given as the solution of the Modelica motion 

equations. After that a centralized routine of the scene 

calculates and adds all forces between pairs of bodies 
in contact. The force calculation is done using the 

intersection volume found by the CSG (Constructive 
Solid Geometry) intersect operator. We have used a 

generalization of the Hertz contact model developed by 

(Nassauer, 2013), where the force is proportional to √��, with V=penetration volume and d=penetration 

depth. The force is acting in the centroid of the 

penetration volume. The details are given in section 
6.1. 

1.4 Example: Simple Objects 

As an example of how the presented library can be 

used, consider the billiard like set-up in Figure 1 of 100 

layers of balls, i.e. 5050 balls on a table plus one ball 
hitting from below. 

 

Figure 1. 5050 balls hit from below 
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The area around where the first collision happens is 
enlarged in Figure 2. 

 

 

Figure 2. Zoomed in on the first colliding balls 

Modeling such scenario is quite simple: 

 
model Billiard 

  parameter Integer layers=100; 

  parameter Integer n=div(layers*(layers+1),2); 

  inner CollidingWorld collidingWorld; 

  Sphere sphere[n] 

    (x0={{layer(i)*sqrt(3)/2,  

      column(i)-(layer(i)-1)*0.5, 0}  

      for i in 1:n}, each radius=0.5) ; 

  Sphere sphere1(x0={-5,0,0}, v0={1,0,0}, radius=0.5); 

end Billiard; 

 

The trivial functions layer and column calculates the 
position of the i

th
 ball in the triangle. 

2 Modeling Solids 

2.1 Triangle Mesh 

One popular method of representing solids is to define 

its closed surface by a set of triangles with its counter 

clockwise normal pointing outwards. The following 

Modelica record is used:  

 
record TriangleMesh "Defines solid by triangle mesh of its surface" 

  parameter Real vertices[:,3] "3D coordinates of points"; 

  parameter Integer triangles[:,3](min=1)  

    "Triangle structure based on vertices (index array)"; 

end TriangleMesh; 

 

i.e. all vertices are defined in a separate vector and the 

triangles are defined using indices into this vector. 

2.2 Solids Defined by Functions 

A cube can be defined as a function: 
function cube 

  output TriangleMesh mesh=TriangleMesh( 

    vertices={{0,0,0}, {0,1,0}, {0,0,1},{0,1,1},  

      {1,0,0}, {1,1,0}, {1,0,1}, {1,1,1}}, 

     triangles={{1,4,2}, {1,3,4}, {1,5,7}, {1,7,3}, {5,8,7}, {5,6,8},  

      {2,4,8}, {2,8,6}, {4,3,8}, {3,7,8}, {1,6,5}, {1,2,6}}); 

end cube; 

 

The library contains a set of functions for defining the 
triangular meshes of basic primitive shapes such as 

box, cylinder and sphere. In addition, functions for 

translating, rotating and scaling triangle meshes are 
available. 

2.3 Polygon Extrusion 

A convenient method of defining solids, especially for 

early concept studies, is to extrude polygons.  

2.3.1 Editing Polygon as Icon 

Polygon editing is available in Modelica tools since 

one of the icon primitives is Polygon. Dymola has an 

API function to retrieve annotations from Modelica 
classes. This function is used to define a parameter 

vector of 2D coordinates. We propose that such a 
function is included in the Modelica standard. 

An example of such use is shown in Figure 3 for a 

pallet level of a watch. A picture was imported into the 
icon editor and a polygon was drawn over the picture. 

2.3.2 Concave Polygon Triangulation 

The polygon, which can be concave, needs to be 
triangulated in order to fit into the triangular mesh 

representation. 

It is assumed that the polygon is defined counter 
clockwise. The vertices of the polygon need to be 

traversed and inspected for “ears”, i.e. when the edges 
make a “right turn”. A simple algorithm is to remove 

vertices at “left turns” and generate the corresponding 

triangles first. The polygon is therefore traversed as 
long as there are at least 3 remaining vertices. 

2.3.3 Extrusion 

The extrude function takes a potentially concave 
polygon as input and an extrusion height parameter. It 

triangulates the polygon and converts to 3D 

coordinates for front and back. The extrusion sides are 

trivially triangulated by splitting the rectangles defined 

by the polygon vertices from the front and back 
polygon respectively.  

The resulting triangular mesh for extruding the 

pallet lever polygon is shown in Figure 3. The triangle 
vertices are colored red, green and blue and 

interpolation has been performed over the triangle 

surface.  

 

Figure 3. Triangle mesh of extruded part 
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2.3.4 Regular Forms 

For regular forms such as a gear wheel, it’s convenient 
to just define the polygon for one tooth and use 
replication to define the entire form. In order to 

replicate around a circle, the polygon needs to be 
rotated. Functions to translate, rotate and scale 

polygons are defined.  

Figure 4 shows how the above operations can be 
used to define an escape wheel of a watch. 

 

Figure 4. Triangle mesh of extruded regular form 

2.4 Constructive Solid Geometry Operations 

More complex geometries can be defined using 
constructive solid geometry (CSG). It enables 

combining triangular meshes by the operations: union, 

difference and intersection. 

 

Figure 5. Triangle mesh of part created by CSG 

operations 

 
The solid in Figure 5 has been created using the 

following Modelica code (the parameters are defined in 

section 8.2): 

  mesh := rotate(Cylinder(radius, height=height), {pi/2,0,0}); 

  for i in 1:nSlots loop 

    mesh := difference(mesh, rotate(translate( 

      Box({slotLength,height,slotWidth}),  

        {radius-slotLength,-height, -slotWidth/2}),  

        {0,2*pi/nSlots*(0.5+i),0})); 

    mesh := difference(mesh, rotate(translate(rotate( 

      Cylinder(slotWidth/2, height=height), {pi/2,0,0}),  

        {radius-slotLength,0,0}), {0,2*pi/nSlots*(0.5+i),0})); 

    mesh := difference(mesh, rotate(translate(rotate( 

      Cylinder(stopArcRadius, height=height), {pi/2,0,0}),  

        {centerDistance,0,0}), {0,2*pi/nSlots*i,0})); 

  end for; 
 

A Cylinder is first constructed. A for loop is then used 
to remove boxes and cylinders from the solid by using 

the CSG difference operator. 

This method of defining solids, i.e. a textual 
definition of object creation, extrusion, CSG 

operations, etc, can also be found in certain CAD 

packages such as OpenSCAD and OpenJSCAD.org. 
The latter uses JavaScript to define the solid objects 

and the operations.  

2.5 Use of CAD data  

The presented Modelica library also contains functions 
for reading triangle meshes from CAD files. The 

current implementation allows reading DXF files. By 

using converters other CAD formats can also be used 
such as VRML. 

3 Modeling Idiom for Pairwise Coupling of 

Objects 

It is important that the end user does not have to care 

about setting-up individual possible contact pairs. It 
should be possible to just drag an object into the scene, 

which is possible in Playmola (Elmqvist, et al., 2015), 

and automatically get collision behavior. 
A unique Integer id needs to be defined by the user 

both for the solutions of (Otter, et al., 2005) and 
(Oestersötebier et al., 2014).  

Our solution solves this problem as follows. The 

contact handling is organized using ExternalObjects, 
i.e. C and C++ code. Each body in the scene registers it 

position which is given as the solution of the Modelica 

motion equations. After that a centralized routine of the 
scene calculates and adds all forces between pairs of 

bodies in contact. These forces are then retrieved for 
each body and used in their motion equations. 

The difficulty is to properly synchronize the external 

calculations of the forces. All current positions and 

orientations must be known then. 

We use inner outer constructs together with flow 

variable declarations in the following way. When a 
body calls setBodyTransformation, it also assigns 

bodyMoved which is defined as 
sync.synchnonize.done. When the body calls 

getBodyForces an extra term is added: 

collidingWorld.forceCalculated.  
 

model Body 

  extends Contacts.Synchronize.CollidingObject; 

  Real bodyMoved = sync.synchronize.done; 

  Modelica.SIunits.Force f[3]; 

equation  

  bodyMoved = setBodyTransformation(…); 
  f =  getBodyForces(b,time) +  

    collidingWorld.forceCalculated; 

… 

end Body; 
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The term forceCalculated will not have a value until all 
bodies have defined bodyMoved and the 

calculateForces function of the external scene object 

has been called. This is accomplished in an algorithm 
in the inner instance of CollidingWorld: 

 

model CollidingWorld 

  ExternalScene scene=ExternalScene(id="s"); 

  Synchronize.SynchronizeConnector synchronize; 

  Real bodyMoved = synchronize.done; 

  Real forceCalculated[3]; 

  Real dummy; 

equation  

  synchronize.do = 0; 

algorithm  

  dummy := bodyMoved; 

  calculateForces(scene); 

  forceCalculated :=fill(0, 3); 

end CollidingWorld; 

 

The trick is then that bodyMoved of CollidingWorld 
should depend on the bodyMoved of all the bodies. 

bodyMoved is defined using a Real flow variable done.  
 

connector SynchronizeConnector 

  Real do; 

  flow Real done; 

end SynchronizeConnector; 

 

This means that all the outer done variables of 
CollidingWorld.synchronize are summed together with 
the inner done of CollidingWorld.synchronize. 

However, to achieve this zero sum semantics, there 

needs to be some connections to 
collidingWorld.synchronize. Each body extends 

CollidingObject and gets the outer declaration, an 

instance of SynchronizeModel and the needed connect 
statement. 
 

model CollidingObject 

  outer CollidingWorld collidingWorld; 

  SyncronizeModel sync; 

equation  

  connect(collidingWorld.synchronize, sync.synchronize); 

end CollidingObject; 

 

model SyncronizeModel 

  SynchronizeConnector synchronize; 

end SyncronizeModel; 

 

This is indeed complex. However, a useful 
consequence of Modelica semantics of inner-outer 

combined with connectors having a flow variable. 
Fortunately, the end user does not need to care about 

this. 
This idiom is documented here since it might be 

useful in other circumstances when external objects are 

involved and careful synchronization of calls to 
external functions are necessary. 

4 Extension to MSL MultiBody library 

A general body with collision behavior and general 

triangle mesh shape has been developed as a wrapper 
to Modelica.Mechanics.MultiBody.Parts.Body. The 

mass and inertia are automatically calculated. It has the 

usual frame connector, i.e. it can be used together with 
joints and force elements in the usual way. 

5 Contact detection 

Often, the most time consuming part of a DEM 

simulation is the contact detection. It is therefore 
crucial that it is as efficient as possible, for speed 

considerations. The contact detection can be divided 

into two phases, the broad phase and the narrow phase. 
The broad phase consists of finding potential collision 

pairs among all the bodies in the scene, while in the 
narrow phase, those pairs are checked in detail for 

collision. For more detailed descriptions than present 

in this section, see (Goteman, et al., 2015). 

5.1 Without a broad phase 

To begin with, a broad phase is not necessary in cases 
where the number of bodies in the scene, n, is low. In 

those cases the body shapes may also be more 

complex, which means that the narrow phase will take 
the majority of the time, and a broad phase would not 

make an impact anyway.  

   Without a broad phase, every body has to be checked 

against all other bodies, resulting in a time complexity 
of O(n

2
). This does not mean that a detailed 

investigation is needed between every pair of bodies. 

Normally, a bounding volume of every body is 
determined. If the bounding volumes of two bodies 

intersect, that pair can be checked in more detail. The 
most common bounding volume type is the axis 

aligned bounding box (AABB), but one can also use 

e.g. the bounding sphere (centered in the centroid of 
the objects). 

5.2 Broad phase 

As n increases, it gets expensive to even check 

bounding volumes for all bodies. The point of having a 

broad phase is to remove the quadratic time 
dependency. The most common approaches uses some 

kind of tree structure into which the objects are placed, 
resulting in an O(n·log(n)) time complexity. 

As an example, imagine 1000 balls placed in a 

straight line, every pair being precisely at contact. 
Without a broad phase, approximately half a million 

bounding volume checks would be carried out, 
assuming that every pair of bodies is only checked 

once. With a good broad phase however, only 999 

checks would be needed. 
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5.2.1 Morton codes 

In this solution, the so called Z-order curve has been 

used in the broad phase. This space filling curve arises 
when doing the following: 

Discretize 3d-space into base cells so that the 
coordinates of each base cell can be described by an 

integer. Translation of coordinates should also be done, 

so that the integers are unsigned. Now the idea is to 
assign a so called Morton code to each base cell. The 

Morton code is determined by interlacing the binary 

representation of the three coordinates, according to the 
example in Figure 6.  

 

Figure 6. Morton code construction 

 

c is the Morton code, and as shown above, starting 
from the least significant bit, the lowest x-bit comes 

first, then y’s lowest, then z’s lowest. Then the second 
lowest x-bit, and so on. 

If the base cells are sorted according to their Morton 

codes, the order will follow the curve shown in Figure 

7 (in 2D). 
 

 

Figure 7. Z-curve ordering 

 

For more details on the Z-order curve and Morton 
encoding, see e.g. (Karras, 2012). 

 

5.2.2 The algorithm 

The algorithm used in this solution is based on the 

algorithm presented by (Lavrov, 2014). The idea is that 

every body is occupying one to eight cells, where the 
sizes of the cells are represented by the level of the 

corresponding octree-node. A cell is not necessarily a 

base cell, but a cubic cell within which the Z-order 
curve covers every base cell before leaving. Given the 

size and lowest Morton code of a cell, the maximal 
Morton code can also be calculated, and the cell can be 

represented by a one dimensional interval. A short 

description of the algorithm: 
1.) For each body, generate its Morton code-based 

intervals (one to eight). This should be done 

according to the body’s AABB. The 
information should be inserted in some data 

structure, where each element contains the 
interval, and a body ID. 

2.) Sort the data structure according to the start 

code of the intervals. 
3.) For each interval: 

a. Iterate forward in the data structure 
until a start code is found that is 

greater than the end code of this 

interval. 
b. For every start code passed within this 

interval, push a pair containing this 

intervals ID and the others, to another 
data structure. 

4.) Remove duplicates from the data structure 
with pairs. 

5.) For each pair: 

a. Check the bodies AABBs against 
each other. 

b. If they intersect, a more detailed 
analysis is needed (narrow phase).  

5.2.3 Parallelization using GPU 

In this section, a short explanation of possible 

parallelizations of step 1-4 is presented. The NVIDIA 
CUDA programming model was used for this 

parallelization, and we refer to (Elmqvist, et al., 2015) 
for a brief introduction to general GPU architectures 

and CUDA. 

The most computationally heavy part of the 
algorithm is sorting. There are in fact two sorts in the 

algorithm, as step 4 also requires a sorted vector to 
operate on. In the first sort, the generated intervals are 

sorted, and the number of elements to be sorted is 

therefore of the same magnitude as the number of 
bodies in the scene. In the second sort, possible 

collision pairs are sorted, and the numbers of pairs are 

therefor directly linked to how crowded the scene is. 
Sorting in the broad phase can be done in parallel, by 

using the CUDA library Thrust’s parallel radix sort. 
Also the Morton encoding can be done in parallel, 

the only problem being that the number of generated 

intervals per object is unknown. This is a problem 
since pushing data to the end of a storage container 

results in the need of atomic operations, which 
generally has a negative effect on GPU performance. 

However, using the fact that an object generates at 

most eight intervals, each thread on the GPU can work 
on its own separate piece of memory, with gaps 

removed after encoding. Because of how the Morton 

encoding is done and the choice of grid size, most 
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objects generate eight intervals, minimizing the gap 
removal. 

Step three could not be effectively parallelized, 

since no effective method was found for determining 
the number of generated collision pairs per interval. 

Without a guaranteed upper limit on collision pairs, the 

Morton encoding method could not be used, and using 
atomic operations proved to be to slow, due to the high 

number of access conflicts. 

5.3 Narrow phase 

When the AABBs of two bodies are colliding, a 
method is needed to detect if the bodies are actually 

colliding. If a collision is detected, the overlapping 

region also has to be determined in order to calculate 
the resulting forces. 

     For this, the CSG (Constructive Solid Geometry) 
intersect operator, using BSP (Binary Space 

Partitioning) trees, is used (Segura, 2013). It is a 
suitable method since it works well and fast on 

arbitrarily shaped bodies that are described by their 

polygon surfaces. 
In a BSP tree, every node has two children. A node 

has a plane in 3d space, and its left child represents one 
of the half spaces created by this plane, and the right 

child represents the other. All operations on the tree are 

naturally defined recursively. BSP trees are widely 
used in e.g. computer graphics, where the planes might 

be chosen as the walls of a room.  

When using BSP trees for CSG operations, the 
planes are chosen as coplanar with the surface 

polygons of the bodies. It results in the left child being 
inside the polygon, and the right child being outside (or 

the other way around, depending on how you define 

your tree), see Figure 8.  

 

Figure 8. BSP tree 

 

Note that polygon (line in 2D) E has to be split by the 

plane coplanar to polygon C in the tree construction, 
but not A by D. This is because the tree structure 

depends on which polygon is chosen as root. 
It is now possible to efficiently determine e.g. which 

part of a body surface is inside another. Polygon by 

polygon, the surface can be traced down the tree, until 
it comes to an empty node, which is either in or out. 

The polygons are split if they span both sides of a 
plane. 

The implementation is made in C++, building on 
principles from a ported version of the JavaScript 

library csg.js, by (Wallace, 2012). 

5.3.1 Multiple Contacts 

The intersection from a collision between concave 
bodies may consist of multiple contact regions. The 

result of the CSG intersection contains no information 
about this, so an algorithm is needed, that splits up the 

provided set of polygons (if needed). A short 

description of a solution: 
The algorithm assumes that the original intersection 

consists of one or more closed volumes, which are to 

be represented as a vector of intersections. The 

algorithm goes through all polygons in the original 

intersection and checks the polygons vertices against 
the vertices of each intersection. If no match is found, a 

new intersection is created. If one match is found, the 

polygon is added to that intersection. If multiple 
matches are found, the corresponding intersections are 

merged and the polygon added. 

5.4 Iterative reformulation 

Motivated by the fact that the narrow phase generally 
was the computationally heaviest part of a simulation, 

except for simulations of spheres, attempts to 

accelerate this phase were made. The critical part of the 
narrow phase is when polygons of one body are 

traversing the other body’s tree, so that became the 
focus.  

Every polygon of a body traverses the tree 

independently, which motivated to do the traversal in 
parallel. Then, by traversing all polygons in all 

collision pairs simultaneously, high parallelism is 

possible both with few complex objects, and many 
simple ones, see figure 9.  

 

Figure 9. Illustration of the new traversal algorithm. 

To achieve this kind of traversal, a major restructuring 

of the CSG algorithm were carried out. Incidentally, 

this restructuring resulted in a large performance boost 
for CPU execution as well. In fact, it performed as 

good as or better than the GPU in most cases. 

The three major reasons for the lack of GPU 
acceleration are: 
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 High instruction divergence. Nearby threads 

may take different paths in the tree. 

 High data divergence. Nearby threads might 

access non-coalesced memory locations. 

 Each thread requires a large amount of 
registers, decreasing the occupancy. 

6 Force Calculations 

6.1 Normal force 

When the intersection between two bodies is 

determined, the resulting forces need to be calculated. 

Because the colliding bodies are arbitrarily shaped, the 

overlapping region (the intersection) is given as a 

polyhedron with arbitrary shape, which implies that a 
classification of type of collision is hard to make. Thus 

a collision type independent model is needed. One such 
model is proposed in (Nassauer, 2013), where the 

contact force for elastic response is volume dependent. 

The derivations are based on Hertz model for contacts 
between spheres. With the assumption that the contact 

region is small with respect to the bodies in contact, it 

leads to: ࡲ =  ࢊ�√�ࡱ

Here E is Young’s modulus of the objects, V is the 

volume of the overlapping region, d is the penetration 

depth and  � = 4ଷ√�. 

It is shown that this is actually a generalization of 
Hertz model. 

The force is applied at the centroid of the 

overlapping region. To determine the force direction, 

constant pressure is assumed within the intersection. 
The direction can then be determined by weighing each 

polygon’s normal with its area, sum over the polygons 
from one of the bodies, and normalize: �� = ∑ �ೕ�ೕೕ∑ �ೕೕ . 

Ai and ni are the area and normal direction of polygon i 

respectively. This gives a behavior similar to that of a 
body floating in a liquid, the only difference being the 

assumption of constant pressure. An illustration of the 

polygonal contributions for the force direction is 
shown in Figure 9, taken from the debug window 

developed together with this package. 
 

 

Figure 9. Intersection volume and forces 

 

The penetration depth is defined as the extension of the 
overlapping region in the direction of nf, see Figure 10, 

and can be found as � = max�ሺ�� ∙ ��ሻ − min�ሺ�� ∙ ��ሻ ⁡. 
pi is the position of vertex i, and j ranges over all 
vertices in the intersection.  

 

Figure 10. Penetration depth 

 

6.2 Additional forces 

In this context, the normal force is not sufficient to 

describe the contact interaction between bodies. 

(Nassauer, 2013) also proposes models for damping 
and friction, described below.  

6.2.1 Damping 

Energy dissipation can be introduced by modifying the 
normal force equation to ࡲ = ሺ૚ࢊ�√�ࡱ +  ,ሻࢊ��
where c is the damping constant and vd is the relative 

velocity between the bodies in the orientation of nf. 

The points for which the velocities are calculated are 
chosen as the centroid of the intersection for both 

bodies.  

6.2.2 Friction 

The classical Coulomb friction model turns out to be 

very hard to implement in DEM simulations. There are 

many reasons for this, the most important being that, in 
the case of static friction, all other forces acting on the 

body have to be known. 
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So instead, the following, velocity dependent model 
is used: �� = (ሺ2µ�∗ − µ�ሻ �2�4 + 1 + µ� − µ��2 + 1)� 

 

F is the normal force, x=vt/vs, where vt is the 

magnitude of the relative tangential velocity between 
the bodies, and vs is the velocity for transition from 

static to kinetic friction. vt can be found by projecting 

the relative velocity between the bodies, again taken at 
the centroid of the intersection, onto the plane of which 

nf is normal. Also µ�∗ = µ�ሺ1 − Ͳ.Ͳ9ሺµೖµ�ሻ4ሻ, 
where µs  and µk are the coefficients of friction for 

static and kinetic friction respectively. This generates 
the following friction behavior. 

 

Figure 11. The friction model  

6.2.3 Rotational damping 

To simulate the friction caused by rotation at the 
contact point, a model with a damping effect is 

proposed. It applies a torque in the opposite direction 

of the relative angular velocity at the contact point (in 
the direction of nf). Its magnitude is proportional to the 

angular velocity, the area of the contact region, and the 
normal force, according to �� = −����ሺ�૚ −�૛ሻ�� 

A is the area of the contact region, cr is a constant for 

calibration of the model, and �� is the angular velocity 

of body i, which is the same in any point of a rigid 
body. The area can be approximated by projecting the 

triangles from one body onto the plane to which nf is 
normal, and summarize: � = ∑�������  

This model does not take into account the fact that the 

friction force most probably is not uniformly 
distributed across the contact area. A better solution 

(not yet implemented) would be to integrate over the 

area, and apply the friction model from section 6.2.2 on 
the triangles. F should then be replaced by the 

corresponding local contribution to the normal force, 

and vt by the tangential component of �× ��, where ri 

is the position of the triangle relative to some fix point, 

e.g. the centroid of the intersection. 

6.3 Additional algorithms for polyhedrons 

6.3.1 Volume and centroid 

To complete the force calculations, algorithms to 

compute the volume and the centroid of the 
intersection are needed. Those algorithms are also 

needed to compute center of mass and mass of a 

triangular meshed body. This is done by (Nürnberg, 
2013), for closed polyhedrons of arbitrary shape. 

Conveniently, the algorithms only depends on the 
surface of the polyhedron, which is what is produced 

from the CSG intersection operation. 

6.3.2 Moment of inertia 

An algorithm to compute the inertia tensor of the 

bodies is also needed. This can be done for an arbitrary 

polyhedron (with triangle faces) in the following way: 
Pick a point, e.g. the point around which the inertia 

tensor is needed. If another point is chosen, a simple 

translation to the desired point has to be carried out 
afterwards.  

The integration over the body’s volume can be 
transformed to a sum of integrals over tetrahedrons. 

Those tetrahedrons are the ones created by connecting 

the chosen point with the triangles of the body surface. 
Now, for one such tetrahedron, if the normal of the 

triangle from the object’s surface points into the 
tetrahedron, the contribution from this tetrahedron is to 

be subtracted, otherwise added, to the total inertia 

tensor.  
What remains is to actually calculate the moment of 

inertia of arbitrary shaped tetrahedrons. (Tonon, 2004) 

presents expressions for this in terms of the vertex 
coordinates. 

 

7 Animation 

7.1 Additional debug window 

In order to allow for debugging and analysis of contact 
behavior, OpenGL was used to create a new animation 

window for Dymola. This window has expanded 

capabilities in order to simplify debugging of contact 
mechanics.  

It allows viewing of the individual polygons of a 
body, which gives the option of viewing the 

intersections in the event of a collision. The window 

also supports drawing of the forces, both the 
contribution of every individual intersection polygon 

and the combined collision force. The resulting torque 

of the collision force is also viewable. 

7.2 New ModelicaServices Model for Triangle 

Mesh 

The ModelicaServices package which might have 

different implementations for different tools, has some 
models for animation of certain predefined shapes such 
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as box, cylinder and sphere, DXF-files and parametric 
surfaces. Parametric surfaces are defined by a function 

of two independent parameters and return the 

corresponding 3D position. 
The above capabilities are not sufficient for 

animation of triangular meshes. We propose that 

ModelicaServices is extended with such a model. It 
will be similar to 

ModelicaServices.Animation.Surface, defining the 
surface by: 

 

    input Real vertices[:,3]  

      "3D coordinates of points"; 

    parameter Integer triangles[:,3]   

      "Triangle structure based on vertices" 

 

Note that vertices can be time dependent, i.e. it is 

possible to animate flexible bodies.  
Three different coloring schemes are proposed: one 

color for entire shape, separate color for each triangle 
and separate color for each vertex with interpolation 

over triangle. The last most powerful alternative 

supports animating stresses in flexible bodies. 
 

8 Examples 

8.1 Lever Escapement 

The lever escapement was invented around 1755 and is 

used in watches to convert an oscillation to a rotational 

motion, see Wikipedia (“Lever escapement”), Figure 
12: 

 

Figure 12. Lever escapement of mechanical watch 

 

There are two contact problems: One for making sure 

the rotation ticks at the desired frequency; the other to 
insert more energy from the spring of the watch to the 

oscillator. 

    The shape of the pallet lever was extracted from 
(British Horological Institute, 2011) and a polygon was 
created and extruded. The escape wheel was defined as 

a regular form as described in section 2.3, see Figure 

13.  
 

 

Figure 13. Pallet lever and escape wheel 

8.2 Geneva Mechanism 

The Geneva mechanism has been used since long ago 

to achieve intermittent motion (Bickford, 1972). It is 
used, for example, in mechanical watches and in film 

projectors to move the film.  

The drive wheel (grey in the figures below) has a 
pin which rotates the output wheel (yellow) when in 

contact in the slots. When the pin is not in contact, the 
output wheel lock its locking surface by sliding against 

the locking ring of the drive wheel.  

The dynamics is thus quite complex and there is a 
fast change in the acceleration when the drive pin 

enters and leaves the slot. 

8.2.1 Parametric mechanism 

Depending on how many output slots there are, the 

geometry of the parts is given. The Modelica function 

generating the output wheel by CSG operations in 
section 2.4 has the following variable declarations 

showing the dependencies. 
 

  input Real radius=1 "Geneva wheel radius"; 

  input Integer nSlots(min=3)=3 "Number of driven slots"; 

  input Real pinDiameter=radius/10 "Drive pin diameter"; 

  input Real clearance=radius/100; 

  input Real height=radius/5; 

  output TriangleMesh mesh; 

protected  

  Real pi=Modelica.Constants.pi; 

  Real centerDistance = radius/cos(pi/nSlots); 

  Real driveCrankRadius = sqrt(centerDistance^2-radius^2); 

  Real slotLength = radius + driveCrankRadius - centerDistance; 

  Real slotWidth = pinDiameter + clearance; 

  Real stopArcRadius = driveCrankRadius - pinDiameter*1.5; 

  Real stopDiscRadius = stopArcRadius-clearance; 

  Real clearanceArc = radius*stopDiscRadius/driveCrankRadius; 

 

It is therefore possible to define a parametric 

mechanism, i.e. that the shapes of all parts of the 
mechanism are parametric. The Geneva mechanism 

with nSlots=3 is shown in Figure 14. 
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Figure 14. Geneva mechanism with 3 slots 

 

The Geneva mechanism with nSlots=6 is shown in 
Figure 15. Notice that the drive wheel is then relatively 

smaller. 

 

Figure 15. Geneva mechanism with 6 slots 

 

The angle of the output wheel is plotted in Figure 16 in 
the case of nSlots=6: 

 

 

Figure 16. Output angle when 6 slots 

 

It should be noted that the contact handling is very 

complex. In particular, the locking surface is concave. 
It is sliding against the convex locking ring which has 

smaller radius. So theoretically there would be one 
contact surface. However, due to the discretization of 

triangulated mesh, there might be several simultaneous 
contact surfaces which our approach handles.  

8.3 Bucket Digging in Pile of Belgian Blocks  

Some of the roads in the old central parts of the city of 

Lund, Sweden are built by Belgian Block stones, see 

Figure 17. 
 

 

Figure 17. Belgian Block stones 

 

To demonstrate that our solution can handle many 
objects (DEM) defined by triangular meshes, we want 

to calculate the force needed on the bucket to grab the 

stones by an excavator or loader tractor, see Figure 18. 
The time to simulate 4 seconds of real time took 27 

minutes. During that time more than 7 million 

collisions took place. 

 
 

 

Figure 18. Bucket digging pile of Belgian Block stones  

 

The plot of the force is shown in Figure 19 when the 
bucket has constant velocity. 
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Figure 19. Plot of horizontal and vertical forces during 

digging  

8.4 Tippe Top 

The Tippe Top is a special toy that has fascinated a lot 

of physicists for a long time. It consists of a hollow 

sphere with a stem, as can be seen in Figure 20.  

 

 

Figure 20: Snapshot of Tippe Top inversion, from left to 

right 

As a result of its special geometry, its center of mass is 

located below the center of the sphere. When spun, the 

Tippe Top will invert itself, and spin on the stem, 
Figure 20. Since the behavior of the Tippe Top is quite 

complex, the fact that we can simulate it serves as a 
good indicator of the potential of this package. 

Simulating the behavior until inverting after 3.3 

seconds took 12 minutes. 

9 Extensions to Flexible Bodies 

The presented framework could naturally be extended 
to flexible bodies as well. This section introduces 

related work not yet integrated in the framework which 
shows the possibilities. 

A prototype library has been developed in Modelica 

to model and simulate planar flexible multibody 
systems which also has the ability of simulating contact 

problems. The simulation of the flexible multibody 
system is based on the floating frame of reference 

approach and a model reducing technique, Kraig-

Bampton method (Ghandriz, 2014, Shabana, 2013 and 
Simeon, 2013).  The geometry of a body is a set of 

polygons defining the outer and inner boundaries of the 

body. A standalone code was developed for generating 
the finite element mesh by implementing Delaunay 

triangulation (Shewchuk, 2012). The reduced model is 
generated as Modelica code.  Once a flexible or a rigid 

body is generated inside Dymola it can be used 
together with joints, drivers, constraints, etc. to build a 

multibody system using the PlanarMultiBody library 

(Zimmer, 2012). 
Having solved the equation of motion of the model, 

the nodal elastic deformations of the flexible 

components are retained from the modal coordinates 
which is used to calculate the time history of the planar 

stresses.  
A few examples will be given below to show the 

capabilities. 

9.1 Flexible Bodies – FEM 

The first example is a simplified version of a 

mechanism so called wing variable camber leading 

edge flap used in Boeing aircraft (Cole, 1967). A 

similar mechanism is shown in Figure 21.  
 

 

Figure 21. Wing variable camber leading edge flap 

 

The behavior of the system can be analyzed using the 

planar flexible library. The simplified mechanism in 
Figure 22 consists of 13 rigid and two flexible bodies.  

The bending of the flap and the resulting stress 
distribution at an instance of time can be seen in Figure 

23.  

     

Figure 22. Folded wing flap 

 

Session 5B: Mechanical Systems

DOI
10.3384/ecp15118427

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

437



 

Figure 23. Unfolding wing flap 

9.2 Flexibility and Topology Optimization 

One of the excellent applications of flexible multibody 

dynamics can be realized as its combination with the 
theory of structural optimization. In particular, 

structural topology optimization is a part of conceptual 

design of a mechanical product where the material 
distribution, i.e. topology, of the body is iteratively 

updated to reach a constraint optimal state (Bendsoe, 
2003). It means that, for example, with the optimal 

topology, the body can be stiffer or stronger but lighter. 

It is the purpose of many mechanical design engineers 
to build a mechanical part which shows the highest 

strength on the operation with the minimum amount of 
material used.  In (Ghandriz, 2015) a method for 

applying structural topology optimization on multibody 

systems (TOMBS) can be found; where, large 
rotational and transitional motion, transient inertia and 

reaction forces of flexible bodies are accounted for in 

the optimization process.  
For applying TOMBS on a flexible multibody 

system it is required to solve equation of motion in 
every optimization iteration; thus, the modal reduction 

and retaining all nodal elastic deformations must also 

be repeated in accordance with the new topology.  
We apply TOMBS on one of the flexible bodies in 

the above example. The optimization problems are 
defined as to minimize the sum of the strain energy 

stored in the body over the operation time, while the 

maximum allowed volume is 60% of the initial volume 
shown in Figure 22.  

If the thickness of the non-optimized body is 

changed such that it has the same weight as the 
optimized body, the generated stresses during 

operation in the body with optimal topology is smaller 
than the stresses of the non-optimized one. Figure 24 

shows the change of the maximum stress of the two 

designs (optimized and non-optimized with reduced 
thickness) over time. The stress distribution of the non-

optimized body with reduced thickness is shown in 
Figure 25 (upper part). The optimal result is shown in 

Figure 25 (lower part). The colors are set for 
illustrative purpose. The highest stress is well below 

the yield stress. In later design stages, the high local 

stresses can be cured using shape optimization. 
 

 

Figure 24. Maximum stresses for optimized and non-

optimized body 

 

 

 

Figure 25. Stress distribution of the non-optimized body 

with reduced thickness (upper part); resulting shape of 

topology optimization (lower figure) 

9.3 Flexibility and Contact 

The last example is the lever escapement where both 
bodies are flexible. In flexible bodies, the forces 

generated due to the contacts must be distributed to the 

nodes of the finite elements involved in contact. The 
portion of the total contact force which each node 

receives is proportional to the node's penetration depth 

and its distance from the center of the contact region.  
To obtain a more exact local deformation of the 

finite elements involved in contact, corresponding 
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nodes must be excluded from the modal reduction, i.e. 
they should be in the set of Master nodes in Kriag-

Bampton method. Figure 26 shows the finite element 

mesh. In Figure 27, three snapshots of the model and 
the resulting stresses at the moment of contact are 

illustrated. 

 
Figure 26. FEM mesh 

 

  

Figure 27. Stresses during the contact 

 
It is interesting to see that the highest stresses in the 

Pallet body, i.e. the body on the left, are caused by the 
inertia forces. These stresses cannot be captured if the 

problem is analyzed statically. 

10 Conclusions 

A new Modelica framework for collision handling and 

DEM has been presented. It allows construction of 3D 
parts by use of Modelica functions for CSG in the early 

concept phase. CSG is also used to find contact region. 

Special considerations are taken in order to be able to 
handle DEM.  

A discussion about the possibility to extend this 
framework to FEM with contact and for topology 

optimization is given. 

We propose that this framework serves as a starting 
point for a working group within Modelica Association 

to define a standard Modelica library for collision, 
contact and DEM. 
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