
Generic Modelica Framework for MultiBody Contacts and

Discrete Element Method

Hilding Elmqvist
1
, Axel Goteman

1,2
, Vilhelm Roxling

1,2
, Toheed Ghandriz

1

1
Dassault Systèmes, Lund, Sweden, {Hilding.Elmqvist, Toheed.Ghandriz}@3ds.com

2
Lund Institute of Technology, Lund, Sweden, {axel.goteman, vilhelm.roxling}@gmail.com

Abstract

A generic framework for mechanical modeling of
objects that collide and have contact is presented. It can

be used in combination with the Modelica MultiBody
library and to model granular objects using DEM

(Discrete Element Method). The shapes of the objects

are given by general triangular meshes.

Keywords: MultiBody models, Discrete Element

Method, Collision detection, Contact handling

1 Introduction

Many real-world system behaviors depend on contact

between mechanical bodies. Examples are walking,

vehicle on a road, mechanisms in mechanical watches
and many types of manufacturing machines.

1.1 Earlier Modelica Based Solutions

There have already been several developments to

support collision handling in Modelica. In (Otter, et al

2005) is described a solution based on a collision
handling software called Solid. The contact force

calculations take into account the contact patch, i.e.
also rotational friction torque is handled. The paper

(Oestersötebier et al, 2014) introduces non-central

contact blocks in which the contact surfaces are
defined. (Hofmann, 2014) discusses the use of the

Bullet Physics Library and deepest point penetration
for force calculations. Unfortunately this point might

not be unique which then results in unrealistic

simulation results.

1.2 Discrete Element Method

The Discrete Element Method (DEM) has a focus on
handling many interacting objects. Typically, both

positional and rotational degrees of freedom are

handled, i.e. 6 DOFs per object. The geometries can be
complex, e.g. polyhedral. Many different force models

can be used depending on what matter is studied.
It has been noted that simply using penetration

depth, which is often calculated by collision packages,

are not suited for continuous time simulation because
of the discontinuity in the forces and where the forces

act. DEM typically handles this by calculating
penetration volume. See, for example, (Chen, 2012).

(Hippman, 2003, 2013) also considers the penetration

volume and makes force calculations based on the
surface patches.

1.3 Contribution

A generic framework for mechanical modeling of

objects that collide and have contact is presented. It can
be used in combination with the Modelica MultiBody

library and to model granular objects using DEM

(Discrete Element Method). The shapes of the objects
are given by general triangular meshes. The special

case of sphere is also supported in order to handle tens
thousands of objects for DEM. The contact handling is

organized using ExternalObjects, i.e. C and C++ code.

Each body in the scene registers its current position
which is given as the solution of the Modelica motion

equations. After that a centralized routine of the scene

calculates and adds all forces between pairs of bodies
in contact. The force calculation is done using the

intersection volume found by the CSG (Constructive
Solid Geometry) intersect operator. We have used a

generalization of the Hertz contact model developed by

(Nassauer, 2013), where the force is proportional to √��, with V=penetration volume and d=penetration

depth. The force is acting in the centroid of the

penetration volume. The details are given in section
6.1.

1.4 Example: Simple Objects

As an example of how the presented library can be

used, consider the billiard like set-up in Figure 1 of 100

layers of balls, i.e. 5050 balls on a table plus one ball
hitting from below.

Figure 1. 5050 balls hit from below

DOI
10.3384/ecp15118427

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

427

The area around where the first collision happens is
enlarged in Figure 2.

Figure 2. Zoomed in on the first colliding balls

Modeling such scenario is quite simple:

model Billiard

 parameter Integer layers=100;

 parameter Integer n=div(layers*(layers+1),2);

 inner CollidingWorld collidingWorld;

 Sphere sphere[n]

 (x0={{layer(i)*sqrt(3)/2,

 column(i)-(layer(i)-1)*0.5, 0}

 for i in 1:n}, each radius=0.5) ;

 Sphere sphere1(x0={-5,0,0}, v0={1,0,0}, radius=0.5);

end Billiard;

The trivial functions layer and column calculates the
position of the i

th
 ball in the triangle.

2 Modeling Solids

2.1 Triangle Mesh

One popular method of representing solids is to define

its closed surface by a set of triangles with its counter

clockwise normal pointing outwards. The following

Modelica record is used:

record TriangleMesh "Defines solid by triangle mesh of its surface"

 parameter Real vertices[:,3] "3D coordinates of points";

 parameter Integer triangles[:,3](min=1)

 "Triangle structure based on vertices (index array)";

end TriangleMesh;

i.e. all vertices are defined in a separate vector and the

triangles are defined using indices into this vector.

2.2 Solids Defined by Functions

A cube can be defined as a function:
function cube

 output TriangleMesh mesh=TriangleMesh(

 vertices={{0,0,0}, {0,1,0}, {0,0,1},{0,1,1},

 {1,0,0}, {1,1,0}, {1,0,1}, {1,1,1}},

 triangles={{1,4,2}, {1,3,4}, {1,5,7}, {1,7,3}, {5,8,7}, {5,6,8},

 {2,4,8}, {2,8,6}, {4,3,8}, {3,7,8}, {1,6,5}, {1,2,6}});

end cube;

The library contains a set of functions for defining the
triangular meshes of basic primitive shapes such as

box, cylinder and sphere. In addition, functions for

translating, rotating and scaling triangle meshes are
available.

2.3 Polygon Extrusion

A convenient method of defining solids, especially for

early concept studies, is to extrude polygons.

2.3.1 Editing Polygon as Icon

Polygon editing is available in Modelica tools since

one of the icon primitives is Polygon. Dymola has an

API function to retrieve annotations from Modelica
classes. This function is used to define a parameter

vector of 2D coordinates. We propose that such a
function is included in the Modelica standard.

An example of such use is shown in Figure 3 for a

pallet level of a watch. A picture was imported into the
icon editor and a polygon was drawn over the picture.

2.3.2 Concave Polygon Triangulation

The polygon, which can be concave, needs to be
triangulated in order to fit into the triangular mesh

representation.

It is assumed that the polygon is defined counter
clockwise. The vertices of the polygon need to be

traversed and inspected for “ears”, i.e. when the edges
make a “right turn”. A simple algorithm is to remove

vertices at “left turns” and generate the corresponding

triangles first. The polygon is therefore traversed as
long as there are at least 3 remaining vertices.

2.3.3 Extrusion

The extrude function takes a potentially concave
polygon as input and an extrusion height parameter. It

triangulates the polygon and converts to 3D

coordinates for front and back. The extrusion sides are

trivially triangulated by splitting the rectangles defined

by the polygon vertices from the front and back
polygon respectively.

The resulting triangular mesh for extruding the

pallet lever polygon is shown in Figure 3. The triangle
vertices are colored red, green and blue and

interpolation has been performed over the triangle

surface.

Figure 3. Triangle mesh of extruded part

Generic Modelica Framework for MultiBody Contacts and Discrete Element Method

428 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118427

2.3.4 Regular Forms

For regular forms such as a gear wheel, it’s convenient
to just define the polygon for one tooth and use
replication to define the entire form. In order to

replicate around a circle, the polygon needs to be
rotated. Functions to translate, rotate and scale

polygons are defined.

Figure 4 shows how the above operations can be
used to define an escape wheel of a watch.

Figure 4. Triangle mesh of extruded regular form

2.4 Constructive Solid Geometry Operations

More complex geometries can be defined using
constructive solid geometry (CSG). It enables

combining triangular meshes by the operations: union,

difference and intersection.

Figure 5. Triangle mesh of part created by CSG

operations

The solid in Figure 5 has been created using the

following Modelica code (the parameters are defined in

section 8.2):

 mesh := rotate(Cylinder(radius, height=height), {pi/2,0,0});

 for i in 1:nSlots loop

 mesh := difference(mesh, rotate(translate(

 Box({slotLength,height,slotWidth}),

 {radius-slotLength,-height, -slotWidth/2}),

 {0,2*pi/nSlots*(0.5+i),0}));

 mesh := difference(mesh, rotate(translate(rotate(

 Cylinder(slotWidth/2, height=height), {pi/2,0,0}),

 {radius-slotLength,0,0}), {0,2*pi/nSlots*(0.5+i),0}));

 mesh := difference(mesh, rotate(translate(rotate(

 Cylinder(stopArcRadius, height=height), {pi/2,0,0}),

 {centerDistance,0,0}), {0,2*pi/nSlots*i,0}));

 end for;

A Cylinder is first constructed. A for loop is then used
to remove boxes and cylinders from the solid by using

the CSG difference operator.

This method of defining solids, i.e. a textual
definition of object creation, extrusion, CSG

operations, etc, can also be found in certain CAD

packages such as OpenSCAD and OpenJSCAD.org.
The latter uses JavaScript to define the solid objects

and the operations.

2.5 Use of CAD data

The presented Modelica library also contains functions
for reading triangle meshes from CAD files. The

current implementation allows reading DXF files. By

using converters other CAD formats can also be used
such as VRML.

3 Modeling Idiom for Pairwise Coupling of

Objects

It is important that the end user does not have to care

about setting-up individual possible contact pairs. It
should be possible to just drag an object into the scene,

which is possible in Playmola (Elmqvist, et al., 2015),

and automatically get collision behavior.
A unique Integer id needs to be defined by the user

both for the solutions of (Otter, et al., 2005) and
(Oestersötebier et al., 2014).

Our solution solves this problem as follows. The

contact handling is organized using ExternalObjects,
i.e. C and C++ code. Each body in the scene registers it

position which is given as the solution of the Modelica

motion equations. After that a centralized routine of the
scene calculates and adds all forces between pairs of

bodies in contact. These forces are then retrieved for
each body and used in their motion equations.

The difficulty is to properly synchronize the external

calculations of the forces. All current positions and

orientations must be known then.

We use inner outer constructs together with flow

variable declarations in the following way. When a
body calls setBodyTransformation, it also assigns

bodyMoved which is defined as
sync.synchnonize.done. When the body calls

getBodyForces an extra term is added:

collidingWorld.forceCalculated.

model Body

 extends Contacts.Synchronize.CollidingObject;

 Real bodyMoved = sync.synchronize.done;

 Modelica.SIunits.Force f[3];

equation

 bodyMoved = setBodyTransformation(…);
 f = getBodyForces(b,time) +

 collidingWorld.forceCalculated;

…

end Body;

Session 5B: Mechanical Systems

DOI
10.3384/ecp15118427

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

429

The term forceCalculated will not have a value until all
bodies have defined bodyMoved and the

calculateForces function of the external scene object

has been called. This is accomplished in an algorithm
in the inner instance of CollidingWorld:

model CollidingWorld

 ExternalScene scene=ExternalScene(id="s");

 Synchronize.SynchronizeConnector synchronize;

 Real bodyMoved = synchronize.done;

 Real forceCalculated[3];

 Real dummy;

equation

 synchronize.do = 0;

algorithm

 dummy := bodyMoved;

 calculateForces(scene);

 forceCalculated :=fill(0, 3);

end CollidingWorld;

The trick is then that bodyMoved of CollidingWorld
should depend on the bodyMoved of all the bodies.

bodyMoved is defined using a Real flow variable done.

connector SynchronizeConnector

 Real do;

 flow Real done;

end SynchronizeConnector;

This means that all the outer done variables of
CollidingWorld.synchronize are summed together with
the inner done of CollidingWorld.synchronize.

However, to achieve this zero sum semantics, there

needs to be some connections to
collidingWorld.synchronize. Each body extends

CollidingObject and gets the outer declaration, an

instance of SynchronizeModel and the needed connect
statement.

model CollidingObject

 outer CollidingWorld collidingWorld;

 SyncronizeModel sync;

equation

 connect(collidingWorld.synchronize, sync.synchronize);

end CollidingObject;

model SyncronizeModel

 SynchronizeConnector synchronize;

end SyncronizeModel;

This is indeed complex. However, a useful
consequence of Modelica semantics of inner-outer

combined with connectors having a flow variable.
Fortunately, the end user does not need to care about

this.
This idiom is documented here since it might be

useful in other circumstances when external objects are

involved and careful synchronization of calls to
external functions are necessary.

4 Extension to MSL MultiBody library

A general body with collision behavior and general

triangle mesh shape has been developed as a wrapper
to Modelica.Mechanics.MultiBody.Parts.Body. The

mass and inertia are automatically calculated. It has the

usual frame connector, i.e. it can be used together with
joints and force elements in the usual way.

5 Contact detection

Often, the most time consuming part of a DEM

simulation is the contact detection. It is therefore
crucial that it is as efficient as possible, for speed

considerations. The contact detection can be divided

into two phases, the broad phase and the narrow phase.
The broad phase consists of finding potential collision

pairs among all the bodies in the scene, while in the
narrow phase, those pairs are checked in detail for

collision. For more detailed descriptions than present

in this section, see (Goteman, et al., 2015).

5.1 Without a broad phase

To begin with, a broad phase is not necessary in cases
where the number of bodies in the scene, n, is low. In

those cases the body shapes may also be more

complex, which means that the narrow phase will take
the majority of the time, and a broad phase would not

make an impact anyway.

 Without a broad phase, every body has to be checked

against all other bodies, resulting in a time complexity
of O(n

2
). This does not mean that a detailed

investigation is needed between every pair of bodies.

Normally, a bounding volume of every body is
determined. If the bounding volumes of two bodies

intersect, that pair can be checked in more detail. The
most common bounding volume type is the axis

aligned bounding box (AABB), but one can also use

e.g. the bounding sphere (centered in the centroid of
the objects).

5.2 Broad phase

As n increases, it gets expensive to even check

bounding volumes for all bodies. The point of having a

broad phase is to remove the quadratic time
dependency. The most common approaches uses some

kind of tree structure into which the objects are placed,
resulting in an O(n·log(n)) time complexity.

As an example, imagine 1000 balls placed in a

straight line, every pair being precisely at contact.
Without a broad phase, approximately half a million

bounding volume checks would be carried out,
assuming that every pair of bodies is only checked

once. With a good broad phase however, only 999

checks would be needed.

Generic Modelica Framework for MultiBody Contacts and Discrete Element Method

430 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118427

5.2.1 Morton codes

In this solution, the so called Z-order curve has been

used in the broad phase. This space filling curve arises
when doing the following:

Discretize 3d-space into base cells so that the
coordinates of each base cell can be described by an

integer. Translation of coordinates should also be done,

so that the integers are unsigned. Now the idea is to
assign a so called Morton code to each base cell. The

Morton code is determined by interlacing the binary

representation of the three coordinates, according to the
example in Figure 6.

Figure 6. Morton code construction

c is the Morton code, and as shown above, starting
from the least significant bit, the lowest x-bit comes

first, then y’s lowest, then z’s lowest. Then the second
lowest x-bit, and so on.

If the base cells are sorted according to their Morton

codes, the order will follow the curve shown in Figure

7 (in 2D).

Figure 7. Z-curve ordering

For more details on the Z-order curve and Morton
encoding, see e.g. (Karras, 2012).

5.2.2 The algorithm

The algorithm used in this solution is based on the

algorithm presented by (Lavrov, 2014). The idea is that

every body is occupying one to eight cells, where the
sizes of the cells are represented by the level of the

corresponding octree-node. A cell is not necessarily a

base cell, but a cubic cell within which the Z-order
curve covers every base cell before leaving. Given the

size and lowest Morton code of a cell, the maximal
Morton code can also be calculated, and the cell can be

represented by a one dimensional interval. A short

description of the algorithm:
1.) For each body, generate its Morton code-based

intervals (one to eight). This should be done

according to the body’s AABB. The
information should be inserted in some data

structure, where each element contains the
interval, and a body ID.

2.) Sort the data structure according to the start

code of the intervals.
3.) For each interval:

a. Iterate forward in the data structure
until a start code is found that is

greater than the end code of this

interval.
b. For every start code passed within this

interval, push a pair containing this

intervals ID and the others, to another
data structure.

4.) Remove duplicates from the data structure
with pairs.

5.) For each pair:

a. Check the bodies AABBs against
each other.

b. If they intersect, a more detailed
analysis is needed (narrow phase).

5.2.3 Parallelization using GPU

In this section, a short explanation of possible

parallelizations of step 1-4 is presented. The NVIDIA
CUDA programming model was used for this

parallelization, and we refer to (Elmqvist, et al., 2015)
for a brief introduction to general GPU architectures

and CUDA.

The most computationally heavy part of the
algorithm is sorting. There are in fact two sorts in the

algorithm, as step 4 also requires a sorted vector to
operate on. In the first sort, the generated intervals are

sorted, and the number of elements to be sorted is

therefore of the same magnitude as the number of
bodies in the scene. In the second sort, possible

collision pairs are sorted, and the numbers of pairs are

therefor directly linked to how crowded the scene is.
Sorting in the broad phase can be done in parallel, by

using the CUDA library Thrust’s parallel radix sort.
Also the Morton encoding can be done in parallel,

the only problem being that the number of generated

intervals per object is unknown. This is a problem
since pushing data to the end of a storage container

results in the need of atomic operations, which
generally has a negative effect on GPU performance.

However, using the fact that an object generates at

most eight intervals, each thread on the GPU can work
on its own separate piece of memory, with gaps

removed after encoding. Because of how the Morton

encoding is done and the choice of grid size, most

Session 5B: Mechanical Systems

DOI
10.3384/ecp15118427

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

431

objects generate eight intervals, minimizing the gap
removal.

Step three could not be effectively parallelized,

since no effective method was found for determining
the number of generated collision pairs per interval.

Without a guaranteed upper limit on collision pairs, the

Morton encoding method could not be used, and using
atomic operations proved to be to slow, due to the high

number of access conflicts.

5.3 Narrow phase

When the AABBs of two bodies are colliding, a
method is needed to detect if the bodies are actually

colliding. If a collision is detected, the overlapping

region also has to be determined in order to calculate
the resulting forces.

 For this, the CSG (Constructive Solid Geometry)
intersect operator, using BSP (Binary Space

Partitioning) trees, is used (Segura, 2013). It is a
suitable method since it works well and fast on

arbitrarily shaped bodies that are described by their

polygon surfaces.
In a BSP tree, every node has two children. A node

has a plane in 3d space, and its left child represents one
of the half spaces created by this plane, and the right

child represents the other. All operations on the tree are

naturally defined recursively. BSP trees are widely
used in e.g. computer graphics, where the planes might

be chosen as the walls of a room.

When using BSP trees for CSG operations, the
planes are chosen as coplanar with the surface

polygons of the bodies. It results in the left child being
inside the polygon, and the right child being outside (or

the other way around, depending on how you define

your tree), see Figure 8.

Figure 8. BSP tree

Note that polygon (line in 2D) E has to be split by the

plane coplanar to polygon C in the tree construction,
but not A by D. This is because the tree structure

depends on which polygon is chosen as root.
It is now possible to efficiently determine e.g. which

part of a body surface is inside another. Polygon by

polygon, the surface can be traced down the tree, until
it comes to an empty node, which is either in or out.

The polygons are split if they span both sides of a
plane.

The implementation is made in C++, building on
principles from a ported version of the JavaScript

library csg.js, by (Wallace, 2012).

5.3.1 Multiple Contacts

The intersection from a collision between concave
bodies may consist of multiple contact regions. The

result of the CSG intersection contains no information
about this, so an algorithm is needed, that splits up the

provided set of polygons (if needed). A short

description of a solution:
The algorithm assumes that the original intersection

consists of one or more closed volumes, which are to

be represented as a vector of intersections. The

algorithm goes through all polygons in the original

intersection and checks the polygons vertices against
the vertices of each intersection. If no match is found, a

new intersection is created. If one match is found, the

polygon is added to that intersection. If multiple
matches are found, the corresponding intersections are

merged and the polygon added.

5.4 Iterative reformulation

Motivated by the fact that the narrow phase generally
was the computationally heaviest part of a simulation,

except for simulations of spheres, attempts to

accelerate this phase were made. The critical part of the
narrow phase is when polygons of one body are

traversing the other body’s tree, so that became the
focus.

Every polygon of a body traverses the tree

independently, which motivated to do the traversal in
parallel. Then, by traversing all polygons in all

collision pairs simultaneously, high parallelism is

possible both with few complex objects, and many
simple ones, see figure 9.

Figure 9. Illustration of the new traversal algorithm.

To achieve this kind of traversal, a major restructuring

of the CSG algorithm were carried out. Incidentally,

this restructuring resulted in a large performance boost
for CPU execution as well. In fact, it performed as

good as or better than the GPU in most cases.

The three major reasons for the lack of GPU
acceleration are:

Generic Modelica Framework for MultiBody Contacts and Discrete Element Method

432 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118427

 High instruction divergence. Nearby threads

may take different paths in the tree.

 High data divergence. Nearby threads might

access non-coalesced memory locations.

 Each thread requires a large amount of
registers, decreasing the occupancy.

6 Force Calculations

6.1 Normal force

When the intersection between two bodies is

determined, the resulting forces need to be calculated.

Because the colliding bodies are arbitrarily shaped, the

overlapping region (the intersection) is given as a

polyhedron with arbitrary shape, which implies that a
classification of type of collision is hard to make. Thus

a collision type independent model is needed. One such
model is proposed in (Nassauer, 2013), where the

contact force for elastic response is volume dependent.

The derivations are based on Hertz model for contacts
between spheres. With the assumption that the contact

region is small with respect to the bodies in contact, it

leads to: ࡲ = ࢊ�√�ࡱ

Here E is Young’s modulus of the objects, V is the

volume of the overlapping region, d is the penetration

depth and � = 4ଷ√�.

It is shown that this is actually a generalization of
Hertz model.

The force is applied at the centroid of the

overlapping region. To determine the force direction,

constant pressure is assumed within the intersection.
The direction can then be determined by weighing each

polygon’s normal with its area, sum over the polygons
from one of the bodies, and normalize: �� = ∑ �ೕ�ೕೕ∑ �ೕೕ .

Ai and ni are the area and normal direction of polygon i

respectively. This gives a behavior similar to that of a
body floating in a liquid, the only difference being the

assumption of constant pressure. An illustration of the

polygonal contributions for the force direction is
shown in Figure 9, taken from the debug window

developed together with this package.

Figure 9. Intersection volume and forces

The penetration depth is defined as the extension of the
overlapping region in the direction of nf, see Figure 10,

and can be found as � = max�ሺ�� ∙ ��ሻ − min�ሺ�� ∙ ��ሻ ⁡.
pi is the position of vertex i, and j ranges over all
vertices in the intersection.

Figure 10. Penetration depth

6.2 Additional forces

In this context, the normal force is not sufficient to

describe the contact interaction between bodies.

(Nassauer, 2013) also proposes models for damping
and friction, described below.

6.2.1 Damping

Energy dissipation can be introduced by modifying the
normal force equation to ࡲ = ሺ૚ࢊ�√�ࡱ + ,ሻࢊ��
where c is the damping constant and vd is the relative

velocity between the bodies in the orientation of nf.

The points for which the velocities are calculated are
chosen as the centroid of the intersection for both

bodies.

6.2.2 Friction

The classical Coulomb friction model turns out to be

very hard to implement in DEM simulations. There are

many reasons for this, the most important being that, in
the case of static friction, all other forces acting on the

body have to be known.

Session 5B: Mechanical Systems

DOI
10.3384/ecp15118427

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

433

So instead, the following, velocity dependent model
is used: �� = (ሺ2µ�∗ − µ�ሻ �2�4 + 1 + µ� − µ��2 + 1)�

F is the normal force, x=vt/vs, where vt is the

magnitude of the relative tangential velocity between
the bodies, and vs is the velocity for transition from

static to kinetic friction. vt can be found by projecting

the relative velocity between the bodies, again taken at
the centroid of the intersection, onto the plane of which

nf is normal. Also µ�∗ = µ�ሺ1 − Ͳ.Ͳ9ሺµೖµ�ሻ4ሻ,
where µs and µk are the coefficients of friction for

static and kinetic friction respectively. This generates
the following friction behavior.

Figure 11. The friction model

6.2.3 Rotational damping

To simulate the friction caused by rotation at the
contact point, a model with a damping effect is

proposed. It applies a torque in the opposite direction

of the relative angular velocity at the contact point (in
the direction of nf). Its magnitude is proportional to the

angular velocity, the area of the contact region, and the
normal force, according to �� = −����ሺ�૚ −�૛ሻ��

A is the area of the contact region, cr is a constant for

calibration of the model, and �� is the angular velocity

of body i, which is the same in any point of a rigid
body. The area can be approximated by projecting the

triangles from one body onto the plane to which nf is
normal, and summarize: � = ∑�������

This model does not take into account the fact that the

friction force most probably is not uniformly
distributed across the contact area. A better solution

(not yet implemented) would be to integrate over the

area, and apply the friction model from section 6.2.2 on
the triangles. F should then be replaced by the

corresponding local contribution to the normal force,

and vt by the tangential component of �× ��, where ri

is the position of the triangle relative to some fix point,

e.g. the centroid of the intersection.

6.3 Additional algorithms for polyhedrons

6.3.1 Volume and centroid

To complete the force calculations, algorithms to

compute the volume and the centroid of the
intersection are needed. Those algorithms are also

needed to compute center of mass and mass of a

triangular meshed body. This is done by (Nürnberg,
2013), for closed polyhedrons of arbitrary shape.

Conveniently, the algorithms only depends on the
surface of the polyhedron, which is what is produced

from the CSG intersection operation.

6.3.2 Moment of inertia

An algorithm to compute the inertia tensor of the

bodies is also needed. This can be done for an arbitrary

polyhedron (with triangle faces) in the following way:
Pick a point, e.g. the point around which the inertia

tensor is needed. If another point is chosen, a simple

translation to the desired point has to be carried out
afterwards.

The integration over the body’s volume can be
transformed to a sum of integrals over tetrahedrons.

Those tetrahedrons are the ones created by connecting

the chosen point with the triangles of the body surface.
Now, for one such tetrahedron, if the normal of the

triangle from the object’s surface points into the
tetrahedron, the contribution from this tetrahedron is to

be subtracted, otherwise added, to the total inertia

tensor.
What remains is to actually calculate the moment of

inertia of arbitrary shaped tetrahedrons. (Tonon, 2004)

presents expressions for this in terms of the vertex
coordinates.

7 Animation

7.1 Additional debug window

In order to allow for debugging and analysis of contact
behavior, OpenGL was used to create a new animation

window for Dymola. This window has expanded

capabilities in order to simplify debugging of contact
mechanics.

It allows viewing of the individual polygons of a
body, which gives the option of viewing the

intersections in the event of a collision. The window

also supports drawing of the forces, both the
contribution of every individual intersection polygon

and the combined collision force. The resulting torque

of the collision force is also viewable.

7.2 New ModelicaServices Model for Triangle

Mesh

The ModelicaServices package which might have

different implementations for different tools, has some
models for animation of certain predefined shapes such

Generic Modelica Framework for MultiBody Contacts and Discrete Element Method

434 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118427

as box, cylinder and sphere, DXF-files and parametric
surfaces. Parametric surfaces are defined by a function

of two independent parameters and return the

corresponding 3D position.
The above capabilities are not sufficient for

animation of triangular meshes. We propose that

ModelicaServices is extended with such a model. It
will be similar to

ModelicaServices.Animation.Surface, defining the
surface by:

 input Real vertices[:,3]

 "3D coordinates of points";

 parameter Integer triangles[:,3]

 "Triangle structure based on vertices"

Note that vertices can be time dependent, i.e. it is

possible to animate flexible bodies.
Three different coloring schemes are proposed: one

color for entire shape, separate color for each triangle
and separate color for each vertex with interpolation

over triangle. The last most powerful alternative

supports animating stresses in flexible bodies.

8 Examples

8.1 Lever Escapement

The lever escapement was invented around 1755 and is

used in watches to convert an oscillation to a rotational

motion, see Wikipedia (“Lever escapement”), Figure
12:

Figure 12. Lever escapement of mechanical watch

There are two contact problems: One for making sure

the rotation ticks at the desired frequency; the other to
insert more energy from the spring of the watch to the

oscillator.

 The shape of the pallet lever was extracted from
(British Horological Institute, 2011) and a polygon was
created and extruded. The escape wheel was defined as

a regular form as described in section 2.3, see Figure

13.

Figure 13. Pallet lever and escape wheel

8.2 Geneva Mechanism

The Geneva mechanism has been used since long ago

to achieve intermittent motion (Bickford, 1972). It is
used, for example, in mechanical watches and in film

projectors to move the film.

The drive wheel (grey in the figures below) has a
pin which rotates the output wheel (yellow) when in

contact in the slots. When the pin is not in contact, the
output wheel lock its locking surface by sliding against

the locking ring of the drive wheel.

The dynamics is thus quite complex and there is a
fast change in the acceleration when the drive pin

enters and leaves the slot.

8.2.1 Parametric mechanism

Depending on how many output slots there are, the

geometry of the parts is given. The Modelica function

generating the output wheel by CSG operations in
section 2.4 has the following variable declarations

showing the dependencies.

 input Real radius=1 "Geneva wheel radius";

 input Integer nSlots(min=3)=3 "Number of driven slots";

 input Real pinDiameter=radius/10 "Drive pin diameter";

 input Real clearance=radius/100;

 input Real height=radius/5;

 output TriangleMesh mesh;

protected

 Real pi=Modelica.Constants.pi;

 Real centerDistance = radius/cos(pi/nSlots);

 Real driveCrankRadius = sqrt(centerDistance^2-radius^2);

 Real slotLength = radius + driveCrankRadius - centerDistance;

 Real slotWidth = pinDiameter + clearance;

 Real stopArcRadius = driveCrankRadius - pinDiameter*1.5;

 Real stopDiscRadius = stopArcRadius-clearance;

 Real clearanceArc = radius*stopDiscRadius/driveCrankRadius;

It is therefore possible to define a parametric

mechanism, i.e. that the shapes of all parts of the
mechanism are parametric. The Geneva mechanism

with nSlots=3 is shown in Figure 14.

Session 5B: Mechanical Systems

DOI
10.3384/ecp15118427

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

435

Figure 14. Geneva mechanism with 3 slots

The Geneva mechanism with nSlots=6 is shown in
Figure 15. Notice that the drive wheel is then relatively

smaller.

Figure 15. Geneva mechanism with 6 slots

The angle of the output wheel is plotted in Figure 16 in
the case of nSlots=6:

Figure 16. Output angle when 6 slots

It should be noted that the contact handling is very

complex. In particular, the locking surface is concave.
It is sliding against the convex locking ring which has

smaller radius. So theoretically there would be one
contact surface. However, due to the discretization of

triangulated mesh, there might be several simultaneous
contact surfaces which our approach handles.

8.3 Bucket Digging in Pile of Belgian Blocks

Some of the roads in the old central parts of the city of

Lund, Sweden are built by Belgian Block stones, see

Figure 17.

Figure 17. Belgian Block stones

To demonstrate that our solution can handle many
objects (DEM) defined by triangular meshes, we want

to calculate the force needed on the bucket to grab the

stones by an excavator or loader tractor, see Figure 18.
The time to simulate 4 seconds of real time took 27

minutes. During that time more than 7 million

collisions took place.

Figure 18. Bucket digging pile of Belgian Block stones

The plot of the force is shown in Figure 19 when the
bucket has constant velocity.

0 2 4 6 8 10

-120

-80

-40

0

revolute1.phi

Generic Modelica Framework for MultiBody Contacts and Discrete Element Method

436 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118427

Figure 19. Plot of horizontal and vertical forces during

digging

8.4 Tippe Top

The Tippe Top is a special toy that has fascinated a lot

of physicists for a long time. It consists of a hollow

sphere with a stem, as can be seen in Figure 20.

Figure 20: Snapshot of Tippe Top inversion, from left to

right

As a result of its special geometry, its center of mass is

located below the center of the sphere. When spun, the

Tippe Top will invert itself, and spin on the stem,
Figure 20. Since the behavior of the Tippe Top is quite

complex, the fact that we can simulate it serves as a
good indicator of the potential of this package.

Simulating the behavior until inverting after 3.3

seconds took 12 minutes.

9 Extensions to Flexible Bodies

The presented framework could naturally be extended
to flexible bodies as well. This section introduces

related work not yet integrated in the framework which
shows the possibilities.

A prototype library has been developed in Modelica

to model and simulate planar flexible multibody
systems which also has the ability of simulating contact

problems. The simulation of the flexible multibody
system is based on the floating frame of reference

approach and a model reducing technique, Kraig-

Bampton method (Ghandriz, 2014, Shabana, 2013 and
Simeon, 2013). The geometry of a body is a set of

polygons defining the outer and inner boundaries of the

body. A standalone code was developed for generating
the finite element mesh by implementing Delaunay

triangulation (Shewchuk, 2012). The reduced model is
generated as Modelica code. Once a flexible or a rigid

body is generated inside Dymola it can be used
together with joints, drivers, constraints, etc. to build a

multibody system using the PlanarMultiBody library

(Zimmer, 2012).
Having solved the equation of motion of the model,

the nodal elastic deformations of the flexible

components are retained from the modal coordinates
which is used to calculate the time history of the planar

stresses.
A few examples will be given below to show the

capabilities.

9.1 Flexible Bodies – FEM

The first example is a simplified version of a

mechanism so called wing variable camber leading

edge flap used in Boeing aircraft (Cole, 1967). A

similar mechanism is shown in Figure 21.

Figure 21. Wing variable camber leading edge flap

The behavior of the system can be analyzed using the

planar flexible library. The simplified mechanism in
Figure 22 consists of 13 rigid and two flexible bodies.

The bending of the flap and the resulting stress
distribution at an instance of time can be seen in Figure

23.

Figure 22. Folded wing flap

Session 5B: Mechanical Systems

DOI
10.3384/ecp15118427

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

437

Figure 23. Unfolding wing flap

9.2 Flexibility and Topology Optimization

One of the excellent applications of flexible multibody

dynamics can be realized as its combination with the
theory of structural optimization. In particular,

structural topology optimization is a part of conceptual

design of a mechanical product where the material
distribution, i.e. topology, of the body is iteratively

updated to reach a constraint optimal state (Bendsoe,
2003). It means that, for example, with the optimal

topology, the body can be stiffer or stronger but lighter.

It is the purpose of many mechanical design engineers
to build a mechanical part which shows the highest

strength on the operation with the minimum amount of
material used. In (Ghandriz, 2015) a method for

applying structural topology optimization on multibody

systems (TOMBS) can be found; where, large
rotational and transitional motion, transient inertia and

reaction forces of flexible bodies are accounted for in

the optimization process.
For applying TOMBS on a flexible multibody

system it is required to solve equation of motion in
every optimization iteration; thus, the modal reduction

and retaining all nodal elastic deformations must also

be repeated in accordance with the new topology.
We apply TOMBS on one of the flexible bodies in

the above example. The optimization problems are
defined as to minimize the sum of the strain energy

stored in the body over the operation time, while the

maximum allowed volume is 60% of the initial volume
shown in Figure 22.

If the thickness of the non-optimized body is

changed such that it has the same weight as the
optimized body, the generated stresses during

operation in the body with optimal topology is smaller
than the stresses of the non-optimized one. Figure 24

shows the change of the maximum stress of the two

designs (optimized and non-optimized with reduced
thickness) over time. The stress distribution of the non-

optimized body with reduced thickness is shown in
Figure 25 (upper part). The optimal result is shown in

Figure 25 (lower part). The colors are set for
illustrative purpose. The highest stress is well below

the yield stress. In later design stages, the high local

stresses can be cured using shape optimization.

Figure 24. Maximum stresses for optimized and non-

optimized body

Figure 25. Stress distribution of the non-optimized body

with reduced thickness (upper part); resulting shape of

topology optimization (lower figure)

9.3 Flexibility and Contact

The last example is the lever escapement where both
bodies are flexible. In flexible bodies, the forces

generated due to the contacts must be distributed to the

nodes of the finite elements involved in contact. The
portion of the total contact force which each node

receives is proportional to the node's penetration depth

and its distance from the center of the contact region.
To obtain a more exact local deformation of the

finite elements involved in contact, corresponding

Generic Modelica Framework for MultiBody Contacts and Discrete Element Method

438 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118427

nodes must be excluded from the modal reduction, i.e.
they should be in the set of Master nodes in Kriag-

Bampton method. Figure 26 shows the finite element

mesh. In Figure 27, three snapshots of the model and
the resulting stresses at the moment of contact are

illustrated.

Figure 26. FEM mesh

Figure 27. Stresses during the contact

It is interesting to see that the highest stresses in the

Pallet body, i.e. the body on the left, are caused by the
inertia forces. These stresses cannot be captured if the

problem is analyzed statically.

10 Conclusions

A new Modelica framework for collision handling and

DEM has been presented. It allows construction of 3D
parts by use of Modelica functions for CSG in the early

concept phase. CSG is also used to find contact region.

Special considerations are taken in order to be able to
handle DEM.

A discussion about the possibility to extend this
framework to FEM with contact and for topology

optimization is given.

We propose that this framework serves as a starting
point for a working group within Modelica Association

to define a standard Modelica library for collision,
contact and DEM.

Acknowledgements

This work has partly been performed as a master thesis
project at Lund Institute of Technology. The first

author served as an industrial advisor and Michael

Doggett as the formal supervisor.

The authors want to thank Hans Olsson for
extending Dymola with the capability to animate

triangular meshes.

References

Bendsoe M. P., Sigmund O. (2003): Topology optimization:

theory, methods and applications. Springer Science &

Business Media

Bickford J.H. (1972). Geneva Mechanisms. Mechanisms for

intermittent motion. New York: Industrial Press inc. 128.

ISBN 0-8311-1091-0,

http://ebooks.library.cornell.edu/k/kmoddl/pdf/002_010.pd

f

British Horological Institute (2011): Drawing Clock and

Watch Escapements - Distance Learning Course. pp 17-30,

http://www.bhi.co.uk/sites/default/files/Drawing%20Escap

ements%20Version%201.4%20DS.pdf

Chen J. (2012): Discrete Element Method for 3D

Simulations of Mechanical Systems of Non-Spherical

Granular Materials. The University of Electro-

Communications, Japan,

http://ir.lib.uec.ac.jp/infolib/user_contents/9000000625/90

00000625.pdf

Cole J. B., Island M., Weiland R. H. (1967): AIRCRAFT

WING VARIABLE CAMBER LEADING EDGE FLAP.

United States Patent Office,

https://docs.google.com/viewer?url=patentimages.storage.

googleapis.com/pdfs/US3504870.pdf

Elmqvist H., Baldwin A.D., Dahlberg S. (2015): 3D

Schematics of Modelica Models and Gamification.

Proceedings 11th International Modelica Conference,

Versailles, September 21-23, 2015.

Elmqvist H., Olsson H., Goteman A., Roxling V., Zimmer

D., Pollok A. (2015) Automatic GPU Code Generation of

Modelica Functions. Proceedings 11th International

Modelica Conference, Versailles, September 21-23, 2015.

Ghandriz T. (2014): An algorithm for structural topology

optimization of multibody systems, Master’s thesis, Lund
University.

https://sharepoint.srv.lu.se/sites/mimer/kursplanering/gu/S

PBstipendium/Nomineringar%202015/MATEMATIK%20

Tohee%20Ghandriz.pdf

Ghandriz T., Führer C., Elmqvist H. (2015): Structural

Topology Optimization of Multibody Systems.

ECCOMAS Thematic Conference on Multibody

Dynamics, Barcelona, Catalonia, Spain.

Goteman A., Roxling V. (2015): GPU Usage for Parallel

Functions and Contacts in Modelica, Master’s thesis, Lund

Institute of Technology, Lund, Sweden. (To be published)

Gottland N. (2012): Make Geneva wheels of any size,

http://newgottland.com/2012/01/08/make-geneva-wheels-

of-any-size/

Hippman G. (2003): An Algorithm for Compliant Contact

Between Complexly Shaped Surfaces in MultiBody

Dynamics. MultiBody Dynamics 2003, Lisabon, Portygal,

http://www.pcm.hippmann.org/doc/eccomas03_hippmann.

pdf

Hippman G. (2013): Polygonal Contact Model.

http://www.pcm.hippmann.org/

Session 5B: Mechanical Systems

DOI
10.3384/ecp15118427

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

439

Hofmann A., Mikelsons L., Gubsch I., Schubert C. (2014):

Simulating Collisions within the Modelica MultiBody

Library. Proceedings 10th International Modelica

Conference, Lund, March 10-12, 2014,

http://www.ep.liu.se/ecp/096/099/ecp14096099.pdf

Karras T. (2012): Thinking Parallel, Part III: Tree

Construction on the GPU.

 http://devblogs.nvidia.com/parallelforall/thinking-parallel-

part-iii-tree-construction-gpu/

Lavrov D. (2014), Collision Detection Using Z Order Curve

Aka Morton Order.

http://dmytry.com/texts/collision_detection_using_z_order

_curve_aka_Morton_order.html

Mueller R.K. (2015): OpenJSCAD.org User & Programming

Guide. http://openjscad.org/

Nassauer B., Kuna M. (2013): Contact forces of polyhedral

particles in discrete element method. DOI

10.1007/s10035-013-0417-9, Springer Verlag.

Nürnberg R. (2013): Calculating the volume and centroid of

a polyhedron in 3d.

http://wwwf.imperial.ac.uk/~rn/centroid.pdf

Oestersötebier F., Wang P., Trächtler A. (2014): A Modelica

Contact Library for Idealized Simulation of Independently

Defined Contact Surfaces. Proceedings 10th International

Modelica Conference, Lund, March 10-12, 2014,

http://www.ep.liu.se/ecp_article/index.en.aspx?issue=96;ar

ticle=97

Otter M., Elmqvist H., Diaz Lopez J. (2005): Collision

Handling for the Modelica MultiBody Library.

Proceedings 4th International Modelica Conference,

Hamburg, March 7-8, 2005, pp. 45-53,

http://elib.dlr.de/12299/1/otter2005-modelica-collision.pdf

Segura C., Stine T., Yang J. (2013): Constructive Solid

Geometry Using BSP Tree.

https://www.andrew.cmu.edu/user/jackiey/resources/CSG/

CSG_report.pdf

Shabana. A. A. (2013): Dynamics of multibody systems.

Cambridge university press.

Shewchuk J. R. (2012): Lecture Notes on Delaunay Mesh

Generation, Department of Electrical Engineering and

Computer Sciences, University of California at Berkeley.

Simeon B. (2013): Computational flexible multibody

dynamics: a differential-algebraic approach. Springer

Science & Business Media.

Tonon F. (2014): Explicit Exact Formulas for the 3-D

Tetrahedron Inertia Tensor in Terms of its Vertex

Coordinates.

http://docsdrive.com/pdfs/sciencepublications/jmssp/2005/

8-11.pdf

Wallace E. (2012) csg.js. http://evanw.github.io/csg.js/

Zimmer D. (2012): A Planar Mechanical Library for

Teaching Modelica. Proceedings of the 9th International

Modelica Conference, September 3-5, 2012, Munich,

Germany

Generic Modelica Framework for MultiBody Contacts and Discrete Element Method

440 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118427

