
An open toolchain for generating Modelica code

from Building Information Models

Matthis Thorade1 Jörg Rädler1 Peter Remmen2 Tobias Maile3 Reinhard Wimmer3 Jun Cao3

Moritz Lauster2 Christoph Nytsch-Geusen1 Dirk Müller2 Christoph van Treeck3

1Berlin University of the Arts (UdK), {m.thorade,jraedler,nytsch}@udk-berlin.de
2RWTH Aachen University, E.ON Energy Research Center, Institute for Energy Efficient Buildings and Indoor

Climate, Aachen, Germany {premmen,mlauster,dmueller}@eonerc.rwth-aachen.de
3RWTH Aachen University, Institute of Energy Efficient Building, Aachen, Germany

{maile,wimmer,cao,treeck}@e3d.rwth-aachen.de

Abstract

Building Performance Simulation (BPS) is a key ele-
ment in the design of energy efficient buildings, and
there is increasing interest in using the Modelica mod-
elling language for BPS. The IEA-EBC coordinates de-
velopment of BPS in Modelica in the project “Compu-
tational Tools for Building and Community Energy Sys-
tems” (Annex 60). However, developing BPS models
and collecting required input data are time-consuming
and error-prone processes. Reusing existing Building
Information Models (BIM) as basis for Building Perfor-
mance Simulation (BPS) has the potential to make BPS
model development and subsequent simulation easier,
faster and more reliable. Activity 1.3 of the Annex 60
project is working on an open-source toolchain that can
semi-automatically generate code for BPS Modelica
models from a BIM data source. Parts of that toolchain
are discussed in this paper.

Keywords: Building Information Modelling, Modelica

code generation, Building Performance Simulation

1 Introduction

Buildings become increasingly integrated to reduce en-
ergy and peak power and to increase occupant health
and productivity, leading to complex building design.
Building Performance Simulation (BPS) is one key ele-
ment in the design of energy efficient buildings. The En-
ergy in Buildings and Communities Programme (EBC)
of the International Energy Agency (IEA) launched in
2012 the project “Computational Tools for Building and
Community Energy Systems”, also know as Annex 60
(Wetter and van Treeck, 2012). The Annex 60 project
aims at developing next generation computing tools for
the buildings industry, based on open non-proprietary
standards, including the Modelica modelling language
and the Functional Mockup Interface. The structure and

organization of the project into subtasks and activities
is shown in Figure 1.

The development of Modelica model libraries for
BPS before Annex 60 was fragmented with the result
that each institution was developing the same compo-
nents in a different, possibly incompatible, manner.
Activity 1.1 focuses on harmonizing BPS library devel-
opment by providing a core library of base classes and
components commonly needed. The libraries currently
contributing to and relying on the Annex 60 core library
are:

• AixLib from RWTH Aachen (Fuchs et al., 2015)

• BuildingSystems from UdK Berlin (Nytsch-
Geusen et al., 2013)

• Buildings from LBNL (Wetter et al., 2014)

• OpenIDEAS from KU Leuven (Baetens et al.,
2015)

Each library extends the core library by providing addi-
tional components for special applications, depending
on the respective institutions research focus. The li-
braries AixLib and BuildingSystems will be used later
in this paper to demonstrate the code generation.

But even with advanced component libraries avail-
able, building up BPS models from hand and collecting
required input data remain time-consuming and error-
prone processes (Bazjanac et al., 2011), preventing
practitioners from using BPS more extensively in stan-
dard planning processes. Building Information Mod-
elling (BIM) is a well established technology to model
and manage the digital representation of a building
over its entire lifecycle (see e.g. Eastman et al., 2008).
Reusing existing Building Information Models (BIM)
as the basis for Building Performance Simulation (BPS)
has the potential to make BPS model development and
subsequent simulation easier, faster and more reliable.

DOI
10.3384/ecp15118383

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

383

Figure 1. Structure and organization of the IEA EBC An-

nex 60 (figure adapted from Wetter and van Treeck (2012)).

In this paper, results from Activity 1.3 are presented.

Activity 1.3 of the Annex 60 project aims at leverag-
ing such BIM systems as a source of information for
semi-automated generation of BPS models in the form
of Modelica code. In order to reach a broad audience,
the methods and tools developed should:

• make use of, comply with and contribute to exist-
ing open standards,

• support both building geometry as well as heating,
ventilation and air conditioning (HVAC) compo-
nents,

• support multiple Modelica libraries,

• support a high degree of automation,

• be a collection of small, reusable tools,

• be released under open-source licenses.

A description of the toolchain implementing the overall
process as planned in this project is given by Remmen
et al. (2015), including a review of prior work in the
field. That paper is also summarized in the following
section, giving an overview of the overall process, ba-
sic ideas, assumptions and software foundation. The
section Python Framework then describes in more de-
tail the part of the toolchain that is used for controlling
the workflow, via a GUI or via Python scripts, as well
as the actual code generation. The section Use Cases
gives a first, simplified demonstration of the process.
The paper then concludes with a short discussion of
limitations and future work.

2 Process Overview

The whole process of generating Modelica code from
Building Information Models is in this project imple-
mented as a toolchain of various special-purpose tools.
Having various tools with a clearly defined task means
these tools can be developed partly independent, and
each block can possibly be reused in a different context.
On the other hand, interfaces between the tools have
to be clearly defined, either in the form of a file for-
mat or as an Application Programming Interface (API).
The various steps of the process and the interfaces are
shown schematically in Figure 2 and are discussed in
the following paragraphs, summarizing the paper by
Remmen et al. (2015).

Creating the Building Information Model A typi-
cal starting point for a BIM-based workflow would be
an architect creating a designated space and usage struc-
tures using a BIM-based CAD software. Other domain
experts, e.g. HVAC engineers, then enrich the BIM by
contributing further data. In order to collaboratively
create the model, all involved actors use a common
file format. IFC is a well-established, non-proprietary
and standardized BIM file format (International Orga-
nization for Standardization, 2013). In this project, we
rely on version 4 of IFC, because it contains several
improvements over its predecessor IFC 2x3. Using a
standard format means that various applications on the
market will be able to deliver input to our toolchain.
Also, we profit from existing tools for checking, view-
ing or sanitizing IFC files.

Transformation to Simulation Domain Model

While IFC is a well-established BIM file format, it
is in its current form not very well suited as direct
input for Building Performance Simulation (BPS), be-
cause it does not contain all information required for
BPS (e. g., some detailed HVAC objects and proper-
ties are missing, as well as simulation specific objects
and properties), and it has rather long turnaround time
for changes. Information models for the simulation
domain and corresponding file formats have been de-
veloped with the goal to resolve these drawbacks. In
this project, we rely on SimModel and corresponding
SimXML files as defined by O’Donnell et al. (2011).
The SimXML file format is clearly defined by an XML
Schema Definition (XSD). SimModel closely aligns
with IFC regarding building geometry and building
physics, but removes some redundancies and simplifies
relationships between objects. Besides the IFC model
it also entails other datamodels such as gbXML and
others. Regarding HVAC components, SimModel is a
superset of IFC. That means missing information has
to be added during the transformation process. For
conversion of geometry and building physics data ex-

An Open Toolchain for Generating Modelica Code from Building Information Models

384 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118383

App 1

App 3

App 2

libSimModel
(loading,
parsing,

mapping)

Python

CoTeTo

Modelica

Lib 1

Modelica

Lib 2
...

API

 SimModel
 IFC

Building
Spaces

Geometry

HVAC

Converter

.mo .mo .mo

GUI

Figure 2. EnEff-BIM Process Overview.

isting tools can be used, such as Simergy and/or Space
Boundary Tool (SBT) (Rose and Bazjanac, 2015). For
conversion of HVAC data a new tool is developed in
this project. The two converted parts have to be com-
bined in a second step into a single valid and correct
SimXML file that is information complete, as expected
by the following steps in the overall process. Another
option that is also investigated in this project is to cre-
ate (parts of) SimModel files with only few high level
input parameters provided by the user (such as year
built, type of building, etc.) and filled with typical and
statistical data for a complete model.

Mapping to Modelica libraries To accomplish the
link between the rigid data structure in SimModel with
the flexible data representation on the Modelica side,
mapping rules are needed (Wimmer et al., 2014). Load-
ing the SimModel file, parsing it and mapping the data
from SimModel to Modelica is performed by the C++
library libSimModel, described in detail by Cao et al.
(2014, 2015). The SimXML file is first loaded by a
validating parser that uses the XSD. As part of the pars-
ing process, a hierarchical tree is built up and some
manipulations and simplifications, like resolving links,
are performed. The data, once loaded, is then mapped
using the library specific mapping rules as described
by Wimmer et al. (2015). These mapping rules are
valid for a specific version of a specific library. When
the library changes, the corresponding mapping rules
have to be updated. The mapping rules are again stored
in XML files (confirming to a corresponding XSD).
To ease maintenance of the mapping rules, a tool for
conversion between a spreadsheet table and the corre-
sponding mapping rule XML file is developed.

All mapped data and, as needed, also unmapped
data, as well as the methods and functions of the lib-
SimModel library for loading, parsing and mapping are
exposed to Python as an API.

Code Generation and User Interface The last part
of the toolchain is written in Python and it covers three
tasks: Process control, Information Pre-Processing and
the actual Modelica code generation. These tasks and
the implementation are discussed in the following sec-
tion.

3 Python Tools

The Python tools cover three tasks: Process control,
Information Pre-Processing and the actual Modelica
code generation. The organization of the tools is shown
in Figure 3.

3.1 Process Control

As discussed in the previous section, the whole process
is implemented by several components that build a
toolchain. For the normal end-user this chain should
appear as one tool, but for power-users and during
development all parts should be usable standalone. To
achieve this, some requirements must be fulfilled:

• a common programming platform (language, ver-
sions),

• an Application Programming Interface (API) to
call the components functions from the common
programming platform,

Session 4D: Building Energy Applications 3

DOI
10.3384/ecp15118383

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

385

Python

GUI

Modelica

Lib 1 Lib 2

API:
Tree

Systems
Components
Properties

Process control

Tree view
Add missing

parameter values

2D diagrams 3D visualization

 Python
 templates

Meta model
information

Information
Pre-Processing

C
o
n
n
ec

tio
n
s

 Python
 templates

Meta model
information

Information
Pre-Processing

C
o
n
n
ec

tio
n
s

Figure 3. The Python part of our toolchain.

• no own or just an optional or partial graphical user
interface (GUI).

These requirements are already fulfilled for that part
of the toolchain that use SimModel as a starting point.
That part will be controllable from the common process
control using the GUI or scripts, standalone or embed-
ded in other tools. Further parts of the toolchain will
be added to the common process control as needed.

As the common platform for integrating the compo-
nents Python is used, so all components must be usable
from this language. This requirement is fulfilled if the
component is already written in Python, otherwise a
wrapping API is necessary. Python is well suited to
bind different components to one tool, and it is widely
used and accepted in the Modelica community. The
GUI part is implemented in Qt, so it will be portable to
all major operating systems.

3.2 Information Pre-Processing

While SimModel was designed to contain all informa-
tion that is required for BPS, that information may
sometimes have to be processed or converted. Sim-
ple conversions (e.g. unit conversion) will be covered
by the mapping rules, but more complex conversions
are more easily implemented in Python. One exam-
ple for complex information conversion is the calcula-
tion of equivalent lumped heat capacities according to
VDI 6007 that are used in low-order models of AixLib
(German Association of Engineers, 2012).

The mapping rules also do not cover the connections
between objects, this information is passed to Python
as meta model information. Another task is the process-

ing of Modelica graphical annotations. This is work in
progress and will be extended as needed. The informa-
tion processing is implemented as Python filters for the
templates, as described in the following section.

3.3 Modelica Code Generation

The actual Modelica code generation is implemented
as a tool named CoTeTo, which stands for Code Tem-
plating Tool. Although designed for this project, this
tool was implemented in a way that it can be used stan-
dalone and in other software environments. CoTeTo
will be released under an open-source license.

In this project, Modelica models for a set of differ-
ent model libraries have to be generated using a com-
mon data source. Each library needs separate filtering
and output of data because of different modelling ap-
proaches. These libraries are currently under develop-
ment and are likely to change in the future as well. This
requires a flexible and generic data conversion frame-
work to allow for future changes. Thus, the framework
should allow flexible output components for different
libraries in multiple versions as well as flexible input
components, both should be easy to maintain even for
non-programmers. The workflow of CoTeTo and the
coupling to other tools within the toolchain is shown in
Figure 3. We designed CoTeTo to be used by graphical,
command line and library level interfaces. The multiple
access possibilities open the framework to a huge com-
munity. The fact that Python does not require extensive
compilation cycles helps with rapid development. The
following section will give an overview of the compo-
nents and their functionality. We have divided CoTeTo
into input components (Data APIs) and output compo-
nents (Generators). A Generator depends on a specific
Data API (defined by its name and version).

The Template Approach There are two general con-
cepts for the generation of textual output within a com-
puter program. One approach is to embed print()-
statements for text strings and data in the structure of a
program. This is useful for nearly static, well-defined
structures of the data set and of the textual output.

The other approach is template-based, where place-
holders for the content are embedded in a text file (a
template for the output). Besides placeholders tem-
plates also offer control structures. Thus, template-
based model generation allows complying with fixed
Modelica language syntax and adding flexible model
content in the same file. One advantage is the flexibility
for the end user, who does not necessarily need to dive
into the programs’ internal structure, but can just enrich
the template file with placeholders and simple program-
ming constructs, whenever the used Modelica models
change. This workflow is much like the form letter
function in office software, which fills some variable
address fields in a text document from a database.

An Open Toolchain for Generating Modelica Code from Building Information Models

386 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118383

The template approach fits very well into the flexible
structure of the CoTeTo framework, as it is indepen-
dently usable for different information sources. From
the list of available template engines Mako (Bayer,
2014) and Jinja2 (Ronacher, 2014) seem to fit best into
CoTeTo. At this point support for both is implemented,
but after an evaluation phase one of the engines may be
dropped in the future.

Input - Data APIs A Data API is a Python module
that defines a prescribed way to fetch data sets from a
data source. Although we use the Python language to
write the CoTeTo, Data API functions can interface to
other languages.

Different Data APIs and different versions can be
used in parallel. Sample modules for reading JSON,
XML and CSV files exist in CoTeTo. This allows flexi-
ble processes during development and testing. There is
no definition for the structure of the returned data items,
since different data sources contain different types of
data (tree, table, graph, map). It is the job of the used
output Generator to understand the data delivered by
the used Data API.

The most important Data API in the Annex 60 con-
text is the interface to the C++ library libSimModel,
which handles the SimModel parsing and the mapping
to Modelica. Seen from the Python framework and
from CoTeTo it defines the data source used to fill the
placeholders in the output templates.

Output - Generators Once all relevant data has been
loaded into CoTeTo, it is passed to the output compo-
nent, called Generator. We designed the Generator

to contain all items needed to generate the code for a
specific Modelica library. This includes

• filter functions,

• the meta model structure,

• text templates,

• additional configuration and information and

• additional files.

The filter functions, meta model structure and text
templates are used and applied by CoTeTo. Additional
files like the mapping rules XML file can be stored
inside the Generator.

We experienced that some data need manipulation
that may not fit well into the mapping rule mechanism.
For this purpose, Generators can include filter func-
tions (Python code) that we call between the data API
and the templates. The filters are custom-built to the
used library. In our case, they may include simplifi-
cation of geometric relationships and calculation of

Figure 4. Standalone GUI of CoTeTo

model specific parameters. Another application of fil-
ters would be the creation of annotations for the graph-
ical appearance and placement of model components
in the Modelica code.

One major challenge in the automated generation of
Modelica models is the flexibility of Modelica. Gen-
erally said, setting up useful models needs the knowl-
edge of an experienced user. We are following the
approach to encapsulate this knowledge in library spe-
cific meta-models and templates. One essential task is
the appropriate connection of components. The API
returns the connection information corresponding to
the SimModel ontology, which differs from the one
in a Modelica library. The meta model checks if the
connection is applicable, if not, it manipulates it.

The text templates are the last step in the process
chain. The template engine combines the data struc-
tures returned by the Data API and possibly manipu-
lated by filters with the text templates to files with valid
Modelica code. The templates in a Generator can be
splitted into several files to ease maintenance.

Generators can be easily exchanged between dif-
ferent installations, as they are simple folders or even
zip-files with a defined structure. Generators can be
maintained and edited with standard system tools like
a file manager and a text editor. Creating a new Gener-

ator is as simple as copying a folder with an existing
Generator and changing the name or version number
in a text file.

Interface and Handling There are currently three
ways to use CoTeTo:

• CoTeTo can be imported in Python software as a
module library. CoTeTo works both with Python
2.7 and 3.3+. All functions are usable via the
modules API.

• A command line interface can be used interac-
tively or called from other software. It allows
listing the available Data APIs and Generators

Session 4D: Building Energy Applications 3

DOI
10.3384/ecp15118383

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

387

and executing a Generator with a data source URI
to produce the text output.

• The graphical user interface (GUI) is implemented
using PyQt4. It allows flexible browsing and edit-
ing of all components and included files and the
execution of selected Generators. The GUI can
be used as a standalone tool (see Figure 4) or em-
bedded in PyQt4-based applications as a widget.

4 Use Cases

To prove the concept of the toolchain, we have devel-
oped several use cases. These use cases are kept simple
to ensure the focus on the process. Each use case con-
sists of one single room, according to the description of
the validation example of German Guideline VDI 6007
(German Association of Engineers, 2012) and varying
HVAC setups. We divide the use cases in two groups,
water- and air-based systems. The water-based systems
are only meant for heating, while the air based systems
also cool and ventilate the room.

The first group of use cases has some basic elements
in common. These include a pump, pipes, a PID con-
trolled valve and an expansion vessel. The efficiency
of the pump is given depending on the volume flow.
The control strategy of the pump includes a night set
back, where the volume flow is reduced during nights.
We designed the use cases to be controlled by a PID
controlled valve. The control variable is the room tem-
perature. Besides these common components the water-
based systems differ in the heat generation and heat
distribution. The different combinations are as follows:

1.1 Boiler & Radiator
1.2 Boiler & Radiator & Domestic Hot Water System

2.1 Heat Pump & Radiator
2.2 Heat Pump & Floor heating

3.1 CHP & Boiler & Radiator

The second group of use cases consist of two air-
based setups. Similar to the first group they have most
of the components in common, like air ducts, fans, filter,
damper and silencer to account for additional pressure
losses. They differ in the purpose of the ventilation
system. The first of the two use cases is primarily
heating and includes an electrical heater, the other use
case is primarily cooling and includes an evaporative,
adiabatic cooling device.

The following section presents the first use case (use
case 1.1) and the corresponding Modelica code genera-
tion using AixLib and BuildingSystems library.
As we focus on the HVAC system, we will describe the
code generation for this part of the model only. The
thermal zone is currently modeled using the low order
model from AixLib for both implementations. The
hydraulic schema is shown in Figure 5. A gas boiler

Gas boiler

PID controlled valve

Pump

Expansion vessel

Radiator

Figure 5. Hydraulic schema of the applied use case

heats the water to a fixed set point temperature. A pump
circulates water in the hydraulic system. A radiator
emits the heat to the thermal zone. The parametrization
of the radiator follows the DIN-EN 442 (DIN German
Institute for Standardization, 2015). We designed the
radiator to be controlled by a PID controlled valve.
The use case is completed by connecting pipes and an
expansion vessel.

By calling the API, we load the contained data from
the SimXML file into our Python framework. This
data is already mapped to the corresponding library
as previously described, in our case to AixLib or
BuildingSystems. In addition to the mapped data,
the API returns the topology of the use case as a sorted
list. The next step is to check if the SimModel topology
fits with the Modelica topology in terms of positioning
of the components according to the hydraulic schema
and correct Modelica connections. By analyzing the
Modelica models we identify four different connec-
tion types we have to handle in the use case, all types
are included in the Modelica Standard Library (MSL).
These four connections types correspond to the Sim-
Model connections. The connections (MSL) and their
relations to SimModel are as follows:

Table 1. Comparison of Modelica and SimModel connectors

MSL SimModel

Fluid connector Water connector (cold, hot)
Thermal connector Air connector
Real connector Control connector
Boolean connector Control connector

The framework connects one component after an-
other according to the given topology, ensuring that
the connectors of the models match. In our first use
case we have a simple loop and all components, ex-
cept the expansion vessel, extend from a simple two
port model. This is a straight forward approach, as the
topology between the hydraulic schema, SimModel and

An Open Toolchain for Generating Modelica Code from Building Information Models

388 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118383

Modelica does not differ much. Components that are
not considered in SimModel, like the expansion vessel
are automatically implemented in every hydraulic loop
modeled in Modelica. The meta model contains infor-
mation about the connection of each model and infor-
mation about components that need to be inserted auto-
matically. The model for a thermal zone from AixLib

has two Thermal connectors for the implementation
of convective and radiative heat sources. Both radia-
tors from the two libraries also have a convective and
a radiative thermal connector, while SimModel uses
a single air connector. Further, the API passes the in-
formation that the radiator and the thermal zone are
coupled. The meta model collects and compares all
this information and produces a connection between
radiator and thermal zone.

More challenging is the correct choice of control
systems and their connection to the components.
The chosen controller set up in Modelica depends
heavily on the used component model. For exam-
ple, the pump model in AixLib has a Boolean
input that can turn on and off a night mode with a
reduced volume flow. This allows a direct use of
Modelica.Blocks.Sources.BooleanPulse

as a control element. The pump of
BuildingSystems requires the pressure rise
over the pump as a Real input. This example
shows possible differences in Modelica’s control
implementations. Typical control strategies, like a
night set back, are embedded as templates in the meta
model. These strategies are directly mapped to the
ones in SimModel.

Once all data is processed, the result is a valid Mod-
elica model. A Modelica representation of this spe-
cific use case is given in Figure 6, here using the
BuildingSystems library. The mentioned pump
control is highlighted in red. At this stage of the project
the graphical layout of components in Dymola is not
supported and needs manual input.

5 Summary

5.1 Limitations

As Annex 60 is an ongoing project and all tools are
currently under development, we are aware of limita-
tions in the discussed framework. Some of the limita-
tions will be tackled in ongoing work, others are out
of the projects scope. The following section provides
an overview of known limitations. As the Building In-
formation Model comes in the form of an IFC file, we
assume a valid, well formed model. The IFC file is the
foundation of the presented toolchain. For example the
IFC file has to contain SpaceBoundary entities. Yet, the
process is semi-automated and still needs input from
the user. Whenever the Modelica libraries change, the

P

pump

M
dp_in

dp

simpleValve

M

flowPipe

dp_nominal=1e4
m0=5

radiator returnP
ipe

dp_nom
inal=1e4

m
0=5

K

temperatureSensor

PID

P

setTemp

k=293.15

nightSignal

86400

dp_const

k=5e5

sw
itch_dp

small

k=Modelica.Constants.small

expVessel

setTempBoiler

k=40 + 273.15

boiler

T

baseParameters

g

Base Parameters

thermalZone

degC

weather

Air temp.

Sky rad.

Terrest. rad.

infiltrationRate

k=0.7

combiTimeTable

pump control

Figure 6. One of several use cases (here shown with Build-

ingSystems).

mapping rules and in some cases also the templates in
CoTeTo have to be adapted. For this reason we enable
the use of different versions of Modelica library and
the corresponding mapping rules and templates. Al-
though the latest versions of the libraries are used, the
initialization of the Modelica model may not provide
good starting values. The model still needs fine tuning
and the correct choice of initialization values. The gen-
erated Modelica model can be seen as a first starting
point. This is also true for the graphical arrangement in
the used simulation environment, in our case Dymola.
For simple models like the Use Case, the representation
is fairly straight forward. If we look at more complex
systems a meaningful arrangement is more challenging
and currently not supported. Further limitations are that
currently only two libraries of the Annex 60 project are
supported and to-date the full toolchain is only avail-
able for a single Use Case. Future work includes the
testing of the developed tools with the other Use Cases,
as well as setting up more complex and realistic Use
Cases.

5.2 Conclusion

This paper presents Modelica code generation for Build-
ing Performance Simulation based on Building Infor-
mation Models. The focus is on an open-source Python
framework to connect BIM with Modelica. The work is
embedded in IEA-EBC Project “Computational Tools
for Building and Community Energy Systems”, also
known as Annex 60. As Annex 60 is an international
project with many participants, our approach is an open,
adaptable and integrated toolchain with several stan-
dalone usable tools. We developed the toolchain to

Session 4D: Building Energy Applications 3

DOI
10.3384/ecp15118383

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

389

be generic and applicable for arbitrary Modelica BPS
libraries. In this paper we present a Python frame-
work that basically covers three tasks in the overall
toolchain: Process control, information pre-processing
and Modelica code generation itself. The framework
offers the possibility to access the BIM and control
the process from a GUI, command line interface or
with use of Python scripts. Covered process control
includes the choice of a specific file and applying map-
ping rules or pre-processing steps for different libraries.
The pre-processing includes calculation of library and
model specific parameters and creation of graphical
annotations. To print out the desired Modelica code,
we use a template approach. Templates are easy to use
and manipulate for each users needs, without neces-
sarily diving into the code itself. We tested the whole
toolchain using a first simple Use Case. Future work
will include testing the developed process on more de-
tailed Use Cases. The intent of the project is that all
developed tools will be available under an open-source
license.

Acknowledgement

This work emerged from the Annex 60 project, an in-
ternational project conducted under the umbrella of the
International Energy Agency (IEA) within the Energy
in Buildings and Communities (EBC) Programme. An-
nex 60 will develop and demonstrate new generation
computational tools for building and community en-
ergy systems based on Modelica, Functional Mockup
Interface and BIM standards.

We gratefully acknowledge financial support by
BMWi (German Federal Ministry of Economic Affairs
and Energy), promotional references 03ET1177A and
03ET1177D.

References

Ruben Baetens, Roel De Coninck, Filip Jorissen, Damien Pi-

card, Lieve Helsen, and Dirk Saelens. OpenIDEAS - an

open framework for integrated district energy assessments.

In Proceedings of the 14th IBPSA Conference, 2015. (sub-

mitted).

Michael Bayer. Mako Templates for Python. http://www.

makotemplates.org/, 2014. Accessed: 2015-05-13.

Vladimir Bazjanac, Tobias Maile, James O’Donnell, Cody

Rose, and Natasa Mrazovic. Data enviroments and process-

ing in semi-automated simulation with EnergyPlus. In CIB

W078-W102: 28th International Conference. CIB, Sophia

Antipolis, France, 2011.

Jun Cao, Tobias Maile, James O’Donnel, Reinhard Wimmer,

and Christoph van Treeck. Model transformation from Sim-

Model to Modelica for building energy performance simu-

lation. In Proceedings of the 5th German-Austrian IBPSA

Conference, pages 242–249, 2014.

Jun Cao, Reinhard Wimmer, Matthis Thorade, Tobias Maile,

James O’Donnel, Jörg Rädler, Jérôme Frisch, and Christoph

van Treeck. A flexible model transformation to link BIM

with different Modelica libraries for building energy perfor-

mance simulation. In Proceedings of the 14th IBPSA Con-

ference, 2015. (submitted).

DIN German Institute for Standardization. Radiators and con-

vectors - part 1: Technical specifications and requirements,

2015. 442 - 1.

Charles Eastman, Paul Teicholz, Rafael Sacks, and Kath-

leen Liston. BIM handbook : a guide to building in-

formation modeling for owners, managers, designers, en-

gineers and contractors. Wiley, Hoboken, NJ, 2008.

doi:10.1002/9780470261309.

Energy in Buildings and Communities Programme (EBC). IEA

EBC Homepage. http://iea-ebc.org/. Accessed:

2015-05-13.

Marcus Fuchs, Ana Constantin, Moritz Lauster, Peter Rem-

men, Rita Streblow, and Dirk Müller. Structuring the build-

ing performance Modelica model library AixLib for open

collaborative development. In Proceedings of the 14th

IBPSA Conference, 2015. (submitted).

German Association of Engineers. Calculation of transient

thermal response of rooms and buildings - modelling of

rooms: VDI 6007-1, 2012. 91.120.10, 91.140.10, 6007-1.

International Organization for Standardization. Industry Foun-

dation Classes (IFC) for data sharing in the construction and

facility management industries, 2013. ISO 16739:2013.

Christoph Nytsch-Geusen, Jörg Huber, Manuel Ljubijankic,

and Jörg Rädler. Modelica BuildingSystems – eine

Modellbibliothek zur Simulation komplexer energietech-

nischer Gebäudesysteme. Bauphysik, 35(1):21–29, 2013.

doi:10.1002/bapi.201310045.

James O’Donnell, Richard See, Cody Rose, Tobias Maile,

Vladimir Bazjanac, and Philip Haves. SimModel: A do-

main data model for whole building energy simulation. In

Proceedings of the 12th IBPSA Conference, pages 382–389,

2011. URL http://eetd.lbl.gov/node/51892.

Qt. Qt Cross-platform application and UI development frame-

work. http://www.qt.io/, 2015. Accessed: 2015-05-

13.

Peter Remmen, Jun Cao, Sebastian Ebertshäuser, Jérôme

Frisch, Moritz Lauster, Tobias Maile, James O’Donnell, Ser-

gio Pinheiro, Jörg Rädler, Rita Streblow, Matthis Thorade,

Reinhard Wimmer, Dirk Müller, Christoph Nytsch-Geusen,

and Christoph van Treeck. An open framework for inte-

grated BIM-based building performance simulation using

Modelica. In Proceedings of the 14th IBPSA Conference,

2015. (submitted).

Armin Ronacher. Jinja2 Templates for Python. http://

jinja.pocoo.org/, 2014. Accessed: 2015-05-13.

Cody M. Rose and Vladimir Bazjanac. An algorithm to

generate space boundaries for building energy simula-

tion. Engineering with Computers, 31(2):271–280, 2015.

doi:10.1007/s00366-013-0347-5.

An Open Toolchain for Generating Modelica Code from Building Information Models

390 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118383

Michael Wetter and Christoph van Treeck. IEA Annex 60.

http://www.iea-annex60.org/, 2012. Accessed:

2015-05-13.

Michael Wetter, Wangda Zuo, Thierry Stephane Nouidui,

and Xiufeng Pang. Modelica Buildings library. Journal

of Building Performance Simulation, 7(4):253–270, 2014.

doi:10.1080/19401493.2013.765506.

Reinhard Wimmer, Tobias Maile, James O’Donnell, Jun Cao,

and Christoph van Treeck. Data-requirements specification

to support BIM-based HVAC-definitions in Modelica. In

Proceedings of the 5th German-Austrian IBPSA Conference,

pages 99–107, 2014.

Reinhard Wimmer, Jun Cao, Peter Remmen, Tobias Maile,

James O’Donnel, Jérôme Frisch, Rita Streblow, Dirk

Müller, and Christoph van Treeck. Implementation of ad-

vanced BIM-based mapping rules for automated conversion

to Modelica. In Proceedings of the 14th IBPSA Conference,

2015. (submitted).

Session 4D: Building Energy Applications 3

DOI
10.3384/ecp15118383

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

391

