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Abstract

Modelica describes physical systems on a high level, us-
ing model objects, multi-dimensional arrays and other
data structures as well as graphical representations.
Modelica models are translated to differential-algebraic
equation systems and compiled to executable code prior
to their execution in numerical solvers. The translation
gives a lot of possibilities for code optimization. This is
particularly important for model-based control applica-
tions.

This paper investigates the exploitation of C++ for Mod-
elica code optimization. C++ supports advanced pro-
gramming concepts and at the same time aims to “leave
no room for a lower-level language … (except for as-
sembly  code  in  rare  cases)”  (B.  Stroustrup:  The  C++
Programming Language, 2014). The features exploited
here include polymorphism, templates, built-in excep-
tion handling and object destructors.

The ideas have been implemented in the OpenModelica
C++ runtime. The paper describes its enhancement with
new array features and with an FMI 2.0 interface. FMI
serves as interface between modeling tools and control
applications. In particular the new FMI 2.0 meets re-
quirements of numerical optimization solvers in model-
based control.

A publically available application example demonstrates
the achievements. CPU times obtained with the
OpenModelica C++ runtime are significantly faster than
CPU times obtained with the C runtime or with Dymola.

Keywords: Modelica, OpenModelica, FMI, C++,
model-based control, MPC, MHE, SQP, HQP.

1 Introduction

The development of the Functional Mock-up Interface
(FMI) was originally driven by automotive industries.
The goal was to improve simulation model exchange be-
tween component suppliers and OEMs during product
development. The FMI standard supports model ex-
change and co-simulation of dynamic models using a
combination of xml-files and compiled C-code (FMI,
2014).

FMI 2.0 for model exchange introduces major enhance-
ments, like sparse model structures and directional de-
rivatives. These enhancements make FMI applicable be-
yond functional mock-ups for model-based control and
optimization as well, evolving it to a Functional Model
Interface.

Real-time control applications pose further require-
ments, like small code size, high quality of generated bi-
naries and fast execution speed. The C++ runtime of
OpenModelica is focusing on real-time requirements
(Worschech and Mikelsons, 2012). This makes it supe-
rior for model-based control applications.

It must be noted that the real-time applications addressed
here require cycle times of seconds, sometimes going
down to milliseconds or up to minutes. We assume an
execution platform with relatively high performance,
starting from devices like Raspberry PI and ranging up
to distributed server farms. We don’t consider smaller
devices with only few kilobytes of memory or lacking
floating point arithmetic, because we rate engineering
efficiency exploiting high-level technologies like Mod-
elica or C++ more important than extreme hardware sav-
ings.

2 Model-based control with mathematical

programs

Modelica models are typically used for initial-value sim-
ulations. The strict separation of Modelica models from
numerical solvers opens further application areas. The
models may serve as constraints in mathematical pro-
grams as well. Mathematical programming is a technol-
ogy to solve tasks described with constraints and objec-
tive function. This section outlines how Modelica and
Mathematical Programming are brought together for
model-based control.

2.1 Related work and design rationale

The Optimization Library developed by DLR adds a nu-
merical optimization solver to the Dymola modeling and
simulation environment (Pfeiffer, 2012). The focus is on
usability, supporting engineering design simulations. A
mathematical program is formulated with optimization
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attributes, like bounds or weights, which are added to a
readily compiled simulation model using regular Mod-
elica parameter dialogs. The idea of custom attributes
has been generalized as custom annotations (Zimmer et
al, 2014).

Alternatively to adding an optimization specification on
top of a simulation model, there has been an attempt to
extend the Modelica syntax with the Optimica language
(Åkesson et al, 2010). The approach is conceptionally
questionable because it mixes the physical modeling lan-
guage Modelica with mathematical programs. It is
claimed that this improves the treatment of large-scale
optimization programs for optimal control. The optimi-
zation specific extensions of the Modelica language hin-
der the re-use of simulation technologies like FMI for
optimization. Work basing on Optimica typically in-
volves the development of specific complex tool chains.
Results published so far show feasibility, but no ad-
vantages over earlier simpler approaches, see e.g. (Lazu-
tkin et al, 2014; Magnusson et al, 2014; Ruge et al,
2014). Recent publications report a convergence to-
wards simpler approaches that re-use simulation tech-
nologies, like BLT transformation (Magnusson et al,
2014; Ruge et al, 2014).

The optimization approach used here was developed and
first published many years ago. It combines the ad-
vantages of optimization formulations using custom at-
tributes with the efficient treatment of large-scale opti-
mization programs for optimal control. A front-end for
the optimization solver HQP (Franke and Arnold, 1997)
converts optimal control problems formulated for simu-
lation models to large-scale nonlinear programs treated
internally. The design rationale was to re-use existing
modeling and simulation technologies for optimization,
minimizing additional development effort and depend-
encies on specific tools. The new FMI standard fits well
into the long standing design rationale.

Meanwhile there find many industrial applications of
HQP, including the control of water canal systems
(Wagenpfeil et al, 2014), boom cranes (Neupert et al,
2010) and polymerization reactors (Nagy et al, 2007).
HQP has been integrated with the ABB control system
and is being applied to the model-based optimal control
of power plants worldwide since a decade (Franke and
Vogelbacher, 2006; Franke et al, 2008). Recent applica-
tions address the real-time optimization of large num-
bers of renewable power units in virtual power plants
and smart grids (Franke et al, 2014).

2.2 Treating model-based control with mathe-

matical programs

Many advanced model-based control applications can be
treated as mixed discrete/continuous optimal control
problems. Examples include moving horizon estimation
(MHE) and model predictive control (MPC).

Discrete-time model equations result from the imple-
mentation of control systems on digital computers with
cyclically running tasks. They are described with differ-
ence equations of the form

+)ࢊ࢞ ) = ()ࢊ࢞									,[()ࢊ࢛,(࢚)ࢉ࢞,()ࢊ࢞,]ࢊࢌ = 								,ࢊ࢞ = ,, … ࡷ,
( 1 )

Here ௗ(݇) are the discrete-time states at intervalݔ ݇
with the corresponding sample time points ,ݐ ݐ ଵݐ> < ⋯ < ݐ . The control inputs ௗ(݇) are optimizedݑ
per sample time point. Optimized model parameters
can be treated as additional states that are constant and
have free initial values.

The continuous-time states -describe physical pro (ݐ)ݔ
cesses, like devices for energy conversion or storage.
They are defined with continuous-time differential
equations of the form࢚ࢊ(࢚)ࢉ࢞ࢊ = (࢚)ࢉ࢞									,൧(࢚)ࢉ࢛,(࢚)ࢉ࢞,൯(࢚)൫ࢊ࢞,࢚ൣࢉࢌ = ,ࢉ࢞ ࢚ ∈ ,࢚] 	[ࡷ࢚

( 2 )

Numerical solvers generally require the parameteriza-
tion of continuous-time trajectories with a finite (ݐ)ݑ
number of control inputs (݇), such thatݑ (ݐ)ݑ =௨݂[ݑ,ݐ(݇(ݐ))]. Typically the control inputs describe
the control trajectories piecewise constant or piecewise
linear.

The optimization has to consider physical and legal
limitations that are formulated as constraints of the
form ൧(࢚)ࢉ࢛,൯(࢚)൫ࢊ࢛,(࢚)ࢉ࢞,൯(࢚)൫ࢊ࢞,࢚ൣࢍ  

( 3 )

Remaining degrees of freedom are covered with the ob-
jective function

 ݂ ݇, ൬ݔௗ(݇)ݔ(ݐ)൰ , ൬ݑௗ(݇)ݑ(ݐ)൰൨
ୀ 			 → 			 minݔௗ(0)ݔ(ݐ), (ݐ)ݑௗ(0)ݑ

( 4 )

Typical objectives are the minimization of costs or the
maximization of results. Multiple objectives can often
be expressed monetary and summed up.
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2.3 The HQP solver

HQP treats mixed discrete/continuous optimal control
problems as large-scale mathematical programs (Franke
and Arnold, 1997). Continuous-time differential equa-
tions are approximated numerically over given discrete
time intervals, either with fixed polynomials or using a
variable step size solver. Discrete and continuous-time
states and controls are combined into the state vectorݔ = ௗݔ) ) and the control vectorݔ, ݑ = ௗݑ) ). Thisݑ,
gives the discrete-time optimal control problem:

ܬ = ݂(ݔ) +  ݂(ݔ , )ିଵݑ
ୀ 			 → 			 minݔ ݑ,

with the discrete-time state equationsݔାଵ = ݂(ݔ , ݇						,(ݑ = 0,… ܭ, − 1

and the constraintsܿ(ݔ (ݑ,  0,					݇ = 0,… ܭ, − ͳ	ܿ(ݔሻ  0

( 5 )

The states and the control inputs of all time intervals
are collected into one large vector of optimization vari-
ables ݒ = ݔ) ,ݑ, ,ଵݔ ,ଵݑ … , .(ݔ,ିଵݑ,ିଵݔ

( 6 )

This results in the mathematical program(ݒ)ܬ ௩→ :ܬ							݊݅݉ ℝ → ℝଵℎ(ݒ) = 0													ℎ: ℝ → ℝ	݃(ݒ)  Ͳ													݃: ℝ → ℝ		
( 7 )	

HQP treats large-scale nonlinear optimization with Se-
quential Quadratic Programming (SQP). Basing on the
Lagrangianݒ)ܮ, (ߤ,ߣ = (ݒ)ܬ − (ݒ)ℎ்ߣ − :ܮ																								(ݒ)்݃ߤ ℝ × ℝ × ℝ → ℝଵ

( 8 )

the solution must fulfill the Karush Kuhn Tucker (KKT)
conditionsߘ௩ݒ)ܮ, (ߤ,ߣ = (ݒ)ܬߘ − ߣ்(ݒ)ℎߘ − ߤ்(ݒ)݃ߘ = ,ݒ)ܮఒߘ0 (ߤ,ߣ = −ℎ(ݒ) = 0	

(ݒ)݃																															  Ͳ																																							ߤ  Ͳ																											݃(ݒ)்ߤ = 0	
( 9 )	

HQP applies Lagrange Newton iterationsߘଶݒ)ܮ, (ߣ ቀ∆ߣ∆ݒቁ = ,ݒ)ܮߘ− ାቁߣାݒቀ	(ߣ 	≔ ቀݒ + ߣݒ∆ + 	ቁߣ∆
( 10 )	

to find the solution. The Lagrange Newton iteration is
given here for the case m=0. HQP augments the Lagran-
gian to treat inequality constraints with an Interior Point
method.

The Hessian of the Lagrangian ,ݒ)ܮଶߘ ,ߣ is (ߤ  formed
numerically applying a rank 2 update in each time inter-
val basing on the progress over subsequent iterations.
This efficient multi-rank update is possible because the
discrete-time model equations make the large-scale non-
linear program partial separable. There are only linear
couplings between subsequent time intervals. This is
also why no analytical second order derivatives are re-
quired.

The Jacobian of the Lagrangian ,ݒ)ܮߘ is obtained (ߤ,ߣ
by forming partial derivatives and by solving sensitivity
equations along with the continuous-time differential
equations of the model in each time interval. There exist
different solvers, including fixed or variable step size
and implicit or explicit.

2.4 Relation to other optimization approaches

The mathematical description given above basically ap-
plies to all optimization approaches mentioned in section
2.1. Only the following details differ:

1. The constraints ( 3 ) and optimization objective
( 4 ) may either be formulated as custom attrib-
utes for existing equations or as specific new
equations for optimization (see Optimica).

2. The vector of optimization variables ( 7 ) con-
tains optimized control variables and state vari-
ables. This results in large-scale sparse optimi-
zation programs. It has advantages if state con-
straints are present or for long time horizons.
Alternatively the state variables may be hidden,
resulting in smaller dense optimization pro-
grams (see the Optimization Library).

3. Explicit discrete-time state equations and con-
straints in ( 5 ) lead to partial separability, local-
izing non-linear terms inside individual time
steps (also referred to as multiple shooting).
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This gives the ability to apply efficient multi-
rank updates to the numerical formation of in-
formation about second order derivatives. Al-
ternatively the discrete-time equations may be
replaced with nonlinear terms spanning two
subsequent time steps (known as collocation
and typically applied with Optimica). The lost
partial separability may be compensated with
analytic second order derivatives.

4. The nonlinear optimization program may be
treated with a Newton method (typically used
with Optimica basing on actual second order de-
rivatives) or with a Quasi-Newton method bas-
ing on numerical updates (also known as SQP
method and used with the Optimization Library
and here).

5. Finally there finds different methods for the
treatment of inequality constraints. Well known
approaches include active set methods (see the
Optimization Library) and interior point meth-
ods used with Optimica and here.

3 FMI for model based control

There exist a couple of different powerful Modelica
tools, each having its particular pros and cons. FMI of-
fers the advantage of being tool independent. This makes
it possible to exploit the best features of different mod-
eling tools depending on the application at hand. Once a
control system can import FMI, it may be used together
with any exporting tool.

Even with one and the same modeling tool the runtime
code can be exchanged without effecting the optimiza-
tion solver, e.g. from C code to C++ code as discussed
below.

FMI 2.0 for model exchange covers many aspects of
hooking a model to an optimization solver, like:

· Initialization mode for steady-state models

· Continuous-time mode for differential equa-
tions

· Change of parameter values at runtime

· Directional derivatives for Jacobian evaluation

· ModelStructure defining the sparse pattern in
modelDescription.xml

· Variable names, physical units and start values
in modelDescription.xml

Two important features are missing in FMI 2.0. Differ-
ential-Algebraic Equation (DAE) systems are not cov-
ered. They must be converted to an explicit system of
differential equations inside the FMU. This is a perfor-
mance penalty for optimization solvers that may treat

DAE constraints themselves. This is why FMI is not
suited for models with many algebraic constraints, like
network models.

Clocked equations are a powerful mechanism to model
discrete systems. Unfortunately the FMI event mode and
the ModelStructure do not cover discrete-time states re-
sulting from clocked equations. This makes the treat-
ment of discrete-time models clumsy.

4 OpenModelica

OpenModelica offers an open development process, in-
cluding published nightly tests and a public discussion
panel. This eliminates hidden problems. It ensures a high
quality and makes OpenModelica well suited for code
export to control applications that shall run 7/24 in pos-
sibly safety critical environments.

Moreover OpenModelica has outstanding support for lo-
calization. The GUI is delivered with 9 translations and
the development environment fully supports UTF-8 for
localized doc strings. This broadens the range of possi-
ble applications beyond nerds.

OpenModelica enables extensions by third parties for
particular needs, like model-based control and real-time
applications. Figure 1 gives an overview of the main
modules and the data flow in the OpenModelica com-
piler (OpenModelica, 2014).

Figure 1: Overview of OpenModelica compiler

The parser generates an abstract syntax tree (Absyn),
which is converted to the simplified intermediate code
(SCode) and instantiated to a Differential Algebraic
Equation system (DAE). The backend DAELow simpli-
fies the equations and algorithms, applies DAE index re-
duction and brings the equations to the Block Lower Tri-
angular (BLT) form.

The SimCode module applies a template mechanism to
generate code for a specific target. There exist multiple
code generators, covering the C runtime, FMU export,
JavaScript and more. The C++ runtime was developed
with particular requirements of real-time simulation in
mind (Worschech and Mikelsons, 2012).

Parse Scode Inst DAELow

SimCode

C

…

FMU

C++

.mo Absyn SCode

functions equations,

algorithms
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4.1 Common Sub-expression Elimination

Common sub-expressions, like a function called multi-
ple times for the same arguments, may result from ob-
ject-oriented libraries and minimal connector interfaces.

Take Modelica.Fluid as example. Only pressure p and
specific enthalpy h appear in fluid connectors, besides
fluid composition. Connected components may call the
same function to obtain the temperature T(p, h) on each
side of the connection.

A Modelica tool should eliminate common sub-expres-
sions such that they are evaluated only once.

4.2 C++ runtime

Most Modelica tools translate models to C code and sim-
ulate them with a runtime written in C as well.
OpenModelica offers the possibility to generate simula-
tion code for various languages and runtimes. The de-
fault runtime of OpenModelica is also based on C code,
but there is a powerful additional runtime written in C++
that can easily be used. By comparing these two
runtimes, it can be noticed that the C++ code leads to a
higher compilation time, but gives a better runtime per-
formance. Besides that, the C code is less comprehensi-
ble and harder to maintain.

Especially features like memory management and ex-
ception handling need to be implemented manually in C,
messing up the code. Similar code has to be written mul-
tiple times, for example to implement arrays of different
data types like double, int, bool, string, and records.

C++ addresses many of these issues. It not only has
built-in exception handling and object destructors for au-
tomated memory management, it also offers templates
for  an  advanced  reuse  of  written  code.  C++ compilers
can instantiate one and the same template multiple times
for different data types. Appropriate use of this feature
also increases type safety. It may even shift effort from
model execution to model translation, making the exe-
cutable code more reliable and efficient.

While reducing source code size and improving type
safety, the additional features of C++ lead to longer com-
pilation times. This restricts its use for interactive ses-
sions. Compilation time is less an issue for online appli-
cations, where a model is compiled once and then runs
endlessly in the real-time control.

4.3 Arrays

“I have never seen a perfect matrix class. In fact, given
the wide variety of uses of matrices, it is doubtful
whether one could exist” (Stroustrup, 2014).

Modelica models use multi-dimensional matrices and ar-
rays to a large extent. Unrolling these arrays during

model translation is not acceptable, as it leads to large
code and long translation times. This is why the simula-
tion runtime needs good support for arrays.

The OpenModelica C++ runtime addresses the wide va-
riety of requirements on arrays with polymorphism. Fig-
ure 2 shows the different array classes.

Figure 2: Inheritance diagram of array classes

BaseArray defines a common interface. It is also used as
type for array arguments to functions.

StatArray implements that interface with an array of
fixed size, known at compilation time. The array data is
stored inside the object itself, in order to improve
runtime performance.

DynArray can be resized at runtime. It stores array data
in dynamically allocated memory. It is typically used in
functions that operate on arrays of variable size, like
input Real[:,:] A.

RefArray is a static array of pointers to simulation vari-
ables. This way the array elements may be distributed to
optimize performance (see section 4.4 below).

ArraySlice holds a reference to a BaseArray and gives
access to a sub-array without necessarily copying the
data. It directly maps the Modelica slice syntax to C++,
e.g. for A[1:3,:].

ArraySliceConst implements a subset of the functional-
ity of ArraySlice, giving read access only. This is needed
for slices of const arrays.

4.4 Performance optimizations with RefArray

The RefArray-type is a simple data structure that can
help to improve the performance of large model simula-
tions. Most Modelica tools generate simulation code that
stores the array elements consecutive in memory. A
solver algorithm is used to calculate all equations respec-
tively equation systems of the model. The execution or-
der of these equations is defined during model transla-
tion in the Modelica compiler itself. Because the array
variables of the model are often unrolled in the backend
of the Modelica Compiler, the single array elements are
not solved in the same equation or equation system, but
interspersed throughout different equations. This can
lead to caching problems, because modern CPU cache
memories follow the principle of locality (Denning,
2005). The hardware will automatically prefetch values
that are stored besides the memory locations that were

BaseArray

StatArray DynArray RefArray

ArraySliceConst

ArraySlice
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used in the last instructions. Thus, the required variables
should be stored as dense as possible in memory in order
to reduce cache misses and enable efficient computation.
With the RefArray-type it is possible to store all varia-
bles that are required to solve one equation as dense as
possible in memory, because all array elements are ref-
erences that can be distributed arbitrarily.

4.5 Array storage order

The storage order of multi-dimensional arrays (row ma-
jor or column major) is generally arbitrary.

Most Modelica runtimes follow the common C conven-
tion of row major order. On the other hand most external
functions require column major order (in particular
LAPACK called from Modelica.Math.Matrices). Thus
transposition operations are necessary on each external
function call (e.g. when a matrix A shall be inverted with
inv(A) and inv calls LAPACK.dgetri).

The C++ runtime stores array data in column major or-
der. External functions can be called without overhead
this way. The C++ array implementation hides the stor-
age layout behind its interface. For example the second
element  of  the  first  row  is  accessed  in  Modelica  with
A[1,2] and in the C++ runtime with A(1,2), inde-
pendent of the internal storage order.

4.6 Mapping of base types

Table 1: Mapping of Modelica base types to C++ types

Modelica type C++ type

Real double

Integer int

Boolean bool

String std::string

Table 1 shows the mapping of Modelica base types to
C++. It is assumed that the C++ compiler maps its de-
fault base types to the most appropriate and efficient bi-
nary representations of the respective hardware plat-
form.

It might be considered a drawback that int will typi-
cally be 32 bit even on a 64 bit architecture. On the other
hand the mapping to standard base types improves plat-
form independence and it simplifies the integration with
other software packages, like numerical FORTRAN rou-
tines. Moreover note that the IEEE 754 representation of
double has 64 bits and can treat exact integers with up
to 53 bits in a platform independent way.

The C++ language is paired with a powerful standard li-
brary. The std::string gives the ability to treat a

character string like a regular base type. This simplifies
the coverage of strings by the C++ runtime.

4.7 Real-time behavior

There are some critical facts that have to be considered
for real-time simulations. First of all, most of the pro-
gram execution time should be spent in user mode and
not in kernel mode, to prevent context switches that are
expensive and can bloat the simulation time. For the gen-
erated simulation code, the most critical part that leads
to these kind of context switches is memory allocation.
Therefore, the C++ simulation runtime allocates the re-
quired memory during initialization and frees it after the
simulation run. One exception was described in section
4.3 with the DynArray type, which is rarely used in the
evaluated simulation models and thus not a problem for
the real time behavior.

Secondly the time integration solver and its event han-
dling are important for real-time simulation. The C++
simulation runtime offers clear interfaces to change the
solver and adapt it for real-time criteria. No further de-
tails are given here because this was already described
in (Worschech and Mikelsons, 2012).

Finally, it should be noticed that C++ object oriented
code  can  lead  to  small  code  size  and  small  binaries,
which is important for real-time simulation as well.

5 Application example

Figure 3: DrumBoiler model in OMEdit

The  DrumBoiler  example  was  first  introduced  in
(Franke et al, 2003). Meanwhile it has been added to the
Modelica Standard Library and was re-formulated using
regular Modelica.Media and Modelica.Fluid. Extended
versions of the model, including also once-through boil-
ers, superheaters, reheaters and turbine stages, have been
installed in many steam power plants worldwide, opti-
mizing boiler startup control and plant performance.
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The distribution of the optimization solver HQP contains
two optimization examples for the basic DrumBoiler
model: a steady-state set point optimization and a dy-
namic start-up optimization. The FMI based examples
obtain Jacabians with finite differences so far.

Figure 3 shows the model in the OpenModelica editor
OMEdit. The model has three states: drum pressure, liq-
uid water level and integrated error of the feed water
controller. The model contains discrete events for flow
reversal and control limits. These events are irrelevant
here because they are not triggered during the startup op-
timization.

The objective of the startup optimization is to reach
given set points for steam pressure p and flow rate qm:

ܬ = න ்ݓ
۔ۖەۖ
ۓ −(ݐ)ௌൣ (ݐ),ௌݍ൧ଶൣ − ,൧ଶݍ

݀ݍி(ݐ)݀ݐ ൨ଶ ۙۘۖ
ۖۗ ௧ݐ݀

௧ୀ௧బ 	 → 			 min(ݐ)ݑ	
subject to bounds on the control ݑ = ிݍ) , ܻ௩), i.e.
fuel flow rate and valve position:Ͳ  					ிݍ					  Ͳ	ܹܯ	500  ܻ௩  ͳ															

Figure 4: Results of the startup optimization example

rate of change bounds:−24	ܹܯ/݉݅݊  					 ݐி݀ݍ݀ 					  	݊݅݉/ܹܯ	24
as well as an output constraint on thermal and membrane
stress that is a function of drum temperature differences
and pressure:−150 ܰ݉݉ ଶ  		௨ߪ		  150

ܰ݉݉ ଶߪ௨ = 10ିଷ ݀ ܶ௨݀ݐ + 10ିହ௨	

The time horizon spans over one hour. It is split into 60
equally spaced intervals with a length of 60 seconds. The
control trajectories are parameterized piecewise linear.
The continuous-time differential equations are solved in
each interval with two fixed steps of 30 seconds applying
the Implicit Midpoint Rule (IMP).

Figure 4 shows optimization results. The fuel flow rate
and the valve position are controlled such that the con-
straint on thermal stress is fully exploited while ap-
proaching the target operating point. The optimized con-
trol trajectories consisting of 60 linear line segments ap-
pear smooth in the plot.

5.1 Runtime performance

Table 2: CPU times obtained in a VirtualBox running

Linux jessie 3.16, x86_64 on a MacBook Pro Late 2013

with 2.4 GHz Intel Core i5. The gcc version is 4.9.2.

Modelica Tool for

FMU export

CPU time with gcc flag

-O0 -O2 -Ofast

OpenModelica 1.9.3 16.6 s 15.5 s 13.5 s

OpenModelica 1.9.3
+cseCall

6.0 s 5.5 s 5.2 s

Dymola 2015FD01 3.4 s 1.7 s 1.3 s

OpenModelica 1.9.3
+simCodeTaget=Cpp

5.6 s 1.9 s 1.0 s

OpenModelica 1.9.3
+simCodeTaget=Cpp
+cseCall

2.7 s 1.0 s 0.6 s

Table 2 lists CPU times obtained for different FMUs of
the same model. The results for the regular OpenModel-
ica C runtime show that the elimination of common sub-
expressions with the flag +cseCall is crucial for the fluid
model. The Dymola results serve as reference.

The C++ runtime is selected with the flag
+simCodeTarget=Cpp.  It  uses  the  same  SimCode
input as the C runtime and generates C++ code from it.
The C++ runtime has its own FMI implementation.

The gcc optimization flag has only minor impact on the
OpenModelica C runtime. An improvement by a factor
of 2-3 is seen for Dymola C code. The OpenModelica
C++ runtime  shows  a  speedup  by  a  factor  of  4-6  with
compiler optimization. This huge improvement under-
lines that the higher level expressiveness of C++ is actu-
ally exploited by modern compilers.

The CPU times reported here are the average of 10 runs.
The deviations between different runs as well as the im-
pact of the virtualization environment on the CPU times
are minor. This is important because repeated runs in vir-
tual production environments mark a major use case.
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5.2 Reproduction of results

The results reported here can be reproduced on a Posix
compliant machine with reasonable development tools
installed (on a Debian based system these are the pack-
ages: git, gcc, g++, tcl-dev). One might invoke the com-
mands:

 $ git clone https://github.com/omuses/hqp.git

 $ cd hqp

 $ ./configure

 $ make

 $ cd odc

 $ ./run drumboiler

The last command evaluates drumboiler.tcl. This
file contains the optimization specification and all solver
settings. They are equal, no matter how the FMU was
generated.

The Tcl script calls the OpenModelica compiler omc
with default settings to generate an FMU from the sim-
ulation model DrumBoiler.mo. Alternatively the
FMU can be generated separately and copied to the odc
directory before running the optimization.

Note that the first run with a newly generated FMU con-
tains an unzip operation. Each run parses the file mod-
elDescription.xml. The impact of the XML par-
ser vanishes if multiple runs are performed in one pro-
cess. The average time of ten runs in one process is ob-
tained with:

$ ./odc

% time {source drumboiler.tcl} 10

6 Conclusions

FMI 2.0 for model exchange provides an efficient inter-
face for hooking simulation models to optimization solv-
ers and running model-based control applications. The
approach discussed in this paper offers several ad-
vantages over alternative optimization approaches. The
standardized FMI hides details of particular modeling
tools or components thereof, enabling innovations with-
out comprising a whole tool chain. Several Modelica
tools support FMI.

OpenModelica offers a modular environment that can be
customized and, thanks to the open source setup, further
developed for particular needs.

The default C runtime is a good compromise between
fast compilation speeds and high runtime performance.
It is suited for interactive modeling and simulation ses-
sions. It has limitations for model-based control applica-
tions though. Especially the garbage collection can pro-
duce issues.

The C++ runtime is particularly developed for real-time
simulation. It exploits object destructors for determinis-

tic memory management. C++ has a rich syntax to ex-
press programming concepts on a high level. This not
only improves readability by humans, it also enables
more code optimization by C++ compilers. Exploiting
templates, the amount of manually written code is mini-
mized and type safety is increased. For instance an array
class only needs to be implemented once for arbitrary
types of array elements. This boosts development effi-
ciency and reduces the probability of bugs.

Some missing features were added to the C++ runtime
throughout the work reported here. In particular the ex-
isting FMI 1.0 export was upgraded to FMI 2.0 and some
issues were solved in the OpenModelica backend for
FMI export. The array implementation was enhanced, an
external FORTRAN interface was added. The array stor-
age order was changed from row major to column major
to minimize the overhead when calling external func-
tions, like LAPACK functions from Modelica.Math.Ma-
trices.

The OpenModelica development process with nightly
tests and public issue tracking helped significantly. It
provides immediate feedback on the progress made and
possible negative side effects.

As a result the C++ runtime is applicable to model-based
control using FMI 2.0 for model exchange along with
the widely used optimization solver HQP. A speedup of
up to 8 is seen with gcc optimization flags. An example
shows an FMU exported with the C++ runtime perform-
ing significantly faster than the FMU exported with the
C runtime or with Dymola.

The price to pay with C++ is longer compilation times.
This is less an issue for online control applications,
where a model is compiled once and then runs endlessly
in the real-time control.

Another possible drawback of C++ is stronger coupling
between compilation modules, as required for improved
type safety, performance, and exception handling. These
things are hidden behind FMI.

FMI needs to be further developed towards supporting
DAE constraints, e.g. arising from network models, and
discrete states arising from clocked equations. The
OpenModelica C++ runtime offers a promising basis for
this future work.
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