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Abstract

Many systems require a human to perform real-time con-
trol. To simulate these systems, a dynamic model of
the human’s control behavior is needed. The field of
manual control has developed and validated such mod-
els, and their implementation in Modelica could sup-
port researchers of human-machine systems. This paper
presents a Modelica library with models from the manual
control literature. Python-based tools allow users to per-
form, in real time, the manual tracking tasks they design
in Modelica. Parameter values in the manual controller
models can be automatically tuned to either maximize
tracking performance, or to match recorded control in-
put from a user experiment.
Keywords: manual control, parameter estimation, FMI,

Python, OpenModelica, JModelica.org

1 Introduction

There are many situations where a human operator at-
tempts to make the output of a system follow a desired
trajectory. For example, the top of Figure 1 shows the
task of recording an athlete with a tripod-mounted video
camera. The goal of the camera operator is to keep the
athlete centered in the camera frame. The actual camera
direction is compared to its desired direction (pointed di-
rectly at the athlete), and corrective actions are made by
applying force to the tripod handle. This activity is simi-
lar to eye tracking, where a human keeps a moving object
in the center of his or her vision (Jagacinski, 1977). In
these activities, the human is an active part of a feed-
back control system. Other examples of manual tracking
tasks include aiming a tank turret (Tustin, 1947; Klein-
man and Perkins, 1974), driving an automobile (Bekey
et al., 1977; Hess and Modjtahedzadeh, 1990), and pilot-
ing an aircraft (McRuer and Jex, 1967).

The bottom of Figure 1 shows a simplified diagram of
the task. Blocks represent the camera operator’s control
behavior, and the camera and tripod’s rotational dynam-
ics. The athlete’s direction relative to the tripod is the
reference signal, r(t), the camera’s actual direction is the
camera state, y(t), and the angle between the actual and
desired directions is the error, e(t). The operator’s force
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Figure 1. One-dimensional video camera tracking task.

on the handle is the command input, u(t).
Note that to simulate this system, a model of the hu-

man’s control behavior must be specified. Such mod-
els can be found in the field of manual control, which
uses the tools and techniques of control theory to study
the control behavior of humans. A Modelica library that
captures knowledge from this field would be useful to
modelers of human-machine systems.

This paper presents a library with models of human
control behavior from the manual control literature. In
addition, tools allow users to perform manual tracking
tasks designed in Modelica, and to tune parameter val-
ues in the manual controller models to either maximize
tracking performance, or to match recorded control in-
put from user experiments. The next section gives back-
ground information about manual control and manual
tracking tasks. Then, Sections 3 and 4 present the ▼❛♥✲
✉❛❧❚r❛❝❦✐♥❣ Modelica library and the supporting func-
tions, respectively. Example tracking tasks are described
in Section 5, and conclusions are drawn in Section 6.

2 Manual Tracking

Previous studies have made extensive use of single-axis
manual tracking tasks to investigate the control behav-
ior of humans performing continuous control. In a typ-
ical experimental tracking task, a human operator views
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Figure 2. Display for manual tracking task.
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Figure 3. Sum of sines forcing function.

a display on a computer screen and uses an input device,
such as a joystick or force stick, to generate control in-
put. An example display is shown in Figure 2. There are
two objects on the screen: one is a target that represents
the reference (desired) state, and the other is a cursor that
represents the actual state of the controlled system. The
human’s goal is to make the cursor follow the target as
closely as possible.

Many situations require humans to perform multi-
axis, multi-loop control tasks, so it might seem that
studying one-dimensional control would be an unrea-
sonable oversimplification. However, it has been found
that multi-axis tracking performance is highly related to
one-axis tracking (Todosiev et al., 1967), and that infor-
mation about the human controller derived from single-
axis tracking tasks can be applied to multi-loop tasks
(McRuer et al., 1975).

2.1 Forcing Functions

In the tracking display of Figure 2, the target’s motion
is prescribed by a forcing function. This function should
appear random to prevent the operator from predicting
future behavior of the target, unless the real-world con-
trol task consists of highly predictable signals. This li-
brary, and much of manual control theory, focuses on the
tracking of unpredictable signals.

From past studies, it has been shown that the sum of 5
or more sine waves is unpredictable to human operators
(McRuer et al., 1965). An example summed-sine forcing
function is shown in Figure 3. The individual sine waves
on the left of Figure 3 are combined to yield the more
complicated function on the right. In equation form,

r(t) =
n

∑
i=1

Aisin(ωit +φi), (1)

y(t)
b

Ku(t)M

Figure 4. Mechanical example of a controlled element.

where Ai, ωi, and φi are the sine wave amplitudes, fre-
quencies, and phase angles, respectively. In general, low-
frequency sine waves are given large amplitudes, and
waves with increasing frequency are given increasingly
small amplitudes (Jagacinski and Flach, 2003). The diffi-
culty of tracking a given forcing function depends heav-
ily on the velocity and acceleration of the target motion
(Damveld et al., 2010).

2.2 Controlled Elements

The controlled element is the dynamic response of the
cursor to control input, and it represents the real-world
system under human control. A simple mechanical ex-
ample is shown in the left side of Figure 4. A rolling
cart with mass M is attached to ground by a damper with
damping coefficient b, and the control input pushes the
cart with a force of magnitude Ku(t). The equivalent
controlled-element transfer function is shown in the right
side of Figure 4. The cart exhibits a lagged velocity re-
sponse with time constant M/b and steady-state velocity
K/b. The units of these parameters depend on the units
chosen for M, b, and K.

Simple models have been used to capture the pri-
mary behavior of certain degrees of freedom in aircraft
(McRuer and Jex, 1967), automobiles, and other compli-
cated systems. Many experiments have used the simplest
controlled elements with position, velocity, and acceler-
ation responses.

2.3 Manual Controllers

Human control behavior while tracking an unpredictable
signal can be modeled using tools and techniques from
control theory. A specific model will be called a man-

ual controller model. These models are generally ei-
ther structural or algorithmic in nature (McRuer, 1980).
Structural models use explicit equations and parameters
to model human control pathways and the human’s re-
sulting input-output response. Algorithmic models use
a more implicit optimal control formulation, where only
the human’s total response is computed. This library in-
cludes only structural models. For a review of both kinds
of models, see Hess (2006).

Structural manual controller models have taken many
forms, but most include one or more of the control path-
ways shown in Figure 5. Nearly all controllers include
the compensatory pathway, which acts on the error e(t)
between the reference and measured state. Manual track-
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Figure 5. Manual controller signals and control pathways.

ing experiments that display only this error, and not the
reference and measured states independently, are called
compensatory tracking tasks.

If both the reference state and the measured state are
displayed to the human, then they can be used for the
feedforward and pursuit control actions. The presence
of pursuit information does not guarantee pursuit control
will be used, and the absence of pursuit information does
not guarantee pursuit control will not be used.

The neuromuscular filter accounts for the lag imposed
by limb dynamics and neuromuscular delays. The hu-
man senses the filtered input using the proprioceptive

pathway, and compares it to the desired input.
Once the human’s control input is determined, a dis-

turbance input is added. This can be used for a distur-
bance rejection task (Van Paassen and Mulder, 2006), or
to add remnant to the controller model. Remnant ac-
counts for the human’s control input that is not predicted
by the model. Most of the remnant appears to come from
fluctuations in the effective time delay (McRuer, 1980),
nonsteady control behavior, and nonlinear anticipation
or relay-like operations (McRuer et al., 1967). These
effects are larger when tracking conditions are difficult
(Hess, 1979). The remnant has been found to have fairly
constant power with no major peaks, and it tends to be
relatively small when tracking conditions are favorable
(Wade and Jex, 1972).

Perhaps the most influential model has been the
Crossover model proposed by McRuer and Jex (1967).
The Crossover model states that in a compensatory task
(when only e(t) is displayed) for a variety of controlled-
element dynamics, the operator acts to make the overall
human-machine system assume the form:

Y( jω)

E( jω)
=

Ke− jωτ

jω
near ω = K, (2)

where K is the open-loop system gain, and τ is the effec-
tive time delay. Note that the transfer function is written
with the frequency operator jω instead of the Laplace
variable s. This is to emphasize that the model is only in-
tended to apply in the frequency domain, and may not be

accurate for non-sinusoidal inputs such as steps or ramps.
Furthermore, the Crossover model is only meant to char-
acterize the system near the crossover frequency – hence
its name. The control system’s closed-loop response is
generally dominated by its behavior near the crossover
frequency (McRuer and Jex, 1967).

Note that control input does not appear explicitly in
the Crossover model. It is an implicit model that depends
on the controlled-element dynamics. Therefore it is not
included in the ▼❛♥✉❛❧❚r❛❝❦✐♥❣ library, which requires
explicit models to generate the control input. However,
many of these explicit models were originally formed us-
ing the Crossover model as a basis.

3 Modelica Library

The previous section introduced the elements of typical
manual tracking tasks, and this section presents their im-
plementation in the ▼❛♥✉❛❧❚r❛❝❦✐♥❣ Modelica library.
An overview of the library structure is shown in Fig-
ure 6. Packages in the library will be described in order
from least to most complex, ending with the ❚r❛❝❦✐♥❣✲
❚❛s❦s package. An instance of a tracking task requires
instances from the ▼❛♥✉❛❧❈♦♥tr♦❧❧❡rs, ❈♦♥tr♦❧❧❡❞❊❧❡✲
♠❡♥ts, and ❋♦r❝✐♥❣❋✉♥❝t✐♦♥s packages. The ❇❧♦❝❦s
and ■❝♦♥s packages are straightforward, and will not be
discussed.

❋♦r❝✐♥❣❋✉♥❝t✐♦♥s

This package only includes the summed sine wave sig-
nal, which is by far the most common signal used in
manual tracking tasks. Frequency values can be either
in units of Hz (with ❙✉♠❖❢❙✐♥❡s❍③), or radians per sec-
ond (with ❙✉♠❖❢❙✐♥❡s❘❛❞P❡r❙❡❝). If the user wishes to
make a custom forcing function for either the reference
signal or disturbance input, the signal must be contained
in one block with a single output, and it must be stored in
the appropriate package. If these rules are violated, the
Python functions will not be able to parse the text of the
tracking task.
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Figure 6. ManualTracking library overview.

❈♦♥tr♦❧❧❡❞❊❧❡♠❡♥ts

All controlled elements included in the library are shown
in Table 1. There are the basic position, velocity, and ac-
celeration responses. There are also versions of these ba-
sic responses with an added first-order lag, making them
less responsive at first, but eventually reaching the same
steady-state position/velocity/acceleration.

The unstable ❋✐rst❖r❞❡r❉✐✈❡r❣❡♥t controlled element
was used to investigate limitations of a human’s effective
time delay in Jex et al. (1966). The ❱❡❧♦❝✐t②❋❧❡①✐❜❧❡✲
▼♦❞❡ includes a second order mode that can be oscilla-
tory. This controlled element was studied with relatively
high damping in Shirley and Young (1968), and very low
damping in Potter and Singhose (2014).

▼❛♥✉❛❧❈♦♥tr♦❧❧❡rs

Table 2 shows all manual controller models in equation
form. The ▼❛♥✉❛❧❚r❛❝❦✐♥❣ library documentation con-
tains block diagrams of each controller model, and these
block diagrams are sometimes more intuitively useful
than the equations.

McRuer and Jex (1967) describe how the first four
manual controllers are combined with specific controlled
elements to yield the form of the Crossover model. The
model Pr❡❝✐s✐♦♥❖r✐❣✐♥❛❧ was proposed by McRuer and
his colleagues, and various simplified versions with one
of the lead-lag terms removed have been used since then.
These versions mainly differ in how they represent the
human’s neuromuscular filter. The ▼✉❧t✐❝❤❛♥♥❡❧▼♦❞❡❧,
▼✉❧t✐♠♦❞❛❧▼♦❞❡❧, and ❉❡s❝r✐♣t✐✈❡▼♦❞❡❧ each include

Table 1. Controlled elements.

Class Name Transfer Function

P♦s✐t✐♦♥❘❡s♣♦♥s❡ K

❱❡❧♦❝✐t②❘❡s♣♦♥s❡ K/s

❆❝❝❡❧❡r❛t✐♦♥❘❡s♣♦♥s❡ K/s2

P♦s✐t✐♦♥▲❛❣❣❡❞ K/(T s+1)
❱❡❧♦❝✐t②▲❛❣❣❡❞ K/(s[T s+1])
❆❝❝❡❧❡r❛t✐♦♥▲❛❣❣❡❞ K/(s2[T s+1])
❋✐rst❖r❞❡r❉✐✈❡r❣❡♥t K/(T s−1)
❱❡❧♦❝✐t②❋❧❡①✐❜❧❡▼♦❞❡ Kω2/(s[s2 +2ζ ωs+ω2])

pursuit control, but they have different ways of organiz-
ing the human’s control pathways.

The following two models, ❙tr✉❝t✉r❛❧❋♦r✶st❖r❞❡r
and ❙tr✉❝t✉r❛❧❋♦r✷♥❞❖r❞❡r, include proprioceptive
feedback, and are designed to control first-order and
second-order controlled elements, respectively. The
❋❡❡❞❢♦r✇❛r❞▼♦❞❡❧ includes feedfoward control. For
this control pathway, an inverted model of the plant
dynamics is needed, and the controller automatically
uses the block ▼❛♥✉❛❧❚r❛❝❦✐♥❣✳❇❧♦❝❦s✳❋❡❡❞❋♦r✇❛r❞
for this purpose. To change the inverse dynamics block,
or to make the controller use a different block, the Mod-
elica file text must be modified manually.

Once the controller is selected, the next task is to
choose values for controller parameters. Tools described
in Section 4 can help select these values – they are se-
lected either to yield optimal performance, or the closest
fit to experimental control behavior.
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Table 2. Manual controller models.

Class Name
Control Input, V(s)
as a function of Laplace-transformed r(t), y(t), and e(t), defined in Figure 5

❉❡❧❛②❡❞●❛✐♥ E(K)e−τs

❉❡❧❛②❡❞▲❡❛❞ E(K(T s+1))e−τs

❉❡❧❛②❡❞▲❛❣ E

(

K 1
T2s+1

)

e−τs

❉❡❧❛②❡❞▲❡❛❞▲❛❣ E

(

K
T1s+1
T2s+1

)

e−τs

Pr❡❝✐s✐♦♥✶st❖r❞❡r◆▼ E

(

K
T1s+1
T2s+1

)(

1
T3s+1

)

e−τs

Pr❡❝✐s✐♦♥✷♥❞❖r❞❡r◆▼ E

(

K
T1s+1
T2s+1

)(

ω2

s2+2ζ ωs+ω2

)

e−τs

Pr❡❝✐s✐♦♥✸r❞❖r❞❡r◆▼ E

(

K
T1s+1
T2s+1

)(

ω2

(T3s+1)(s2+2ζ ωs+ω2)

)

e−τs

Pr❡❝✐s✐♦♥❖r✐❣✐♥❛❧
(McRuer et al., 1965)

E

(

K
T1s+1
T2s+1

)(

T3s+1
T4s+1

)(

ω2

(T5s+1)(s2+2ζ ωs+ω2)

)

e−τs

▼✉❧t✐❝❤❛♥♥❡❧▼♦❞❡❧
(Nieuwenhuizen et al., 2008)

[

E(K1(T1s+1))e−τ1s +Y

(

K2
s2(T2s+1)

T3s+1

)

e−τ2s
]

ω2

s2+2ζ ωs+ω2

▼✉❧t✐♠♦❞❛❧▼♦❞❡❧
(Zaal et al., 2012)

[

E

(

K1
(T1s+1)2

T2s+1

)

e−τ1s +Y(K2s)e−τ2s
]

ω2

s2+2ζ ωs+ω2

❉❡s❝r✐♣t✐✈❡▼♦❞❡❧
(Hosman and Stassen, 1999)

[

E(K1e−τ1s +K2se−τ2s)+Y

(

K3se−τ3s +K4
s2(T1s+1)

(T2s+1)(T3s+1)

)]

e−τ4s

❙tr✉❝t✉r❛❧❋♦r✶st❖r❞❡r
(Hess, 1980)

E(K1 +K2se−τ1s)
(

ω2(T s+1)
ω2K3s+(s2+2ζ ωs+ω2)(T s+1)

)

e−τ2s

❙tr✉❝t✉r❛❧❋♦r✷♥❞❖r❞❡r
(Hess, 1980)

E(K1 +K2se−τ1s)
(

ω2(T1s+1)(T2s+1)
ω2K3s+(s2+2ζ ωs+ω2)(T s+1)(T2s+1)

)

e−τ2s

❋❡❡❞❢♦r✇❛r❞▼♦❞❡❧
(Drop et al., 2013)

[

E(K1)e
−τ1s +R

(

K2
1

T s+1

)

[FeedForward]e−τ2s
]

ω2

s2+2ζ ωs+ω2

❚r❛❝❦✐♥❣❚❛s❦s

Blocks from the ❋♦r❝✐♥❣❋✉♥❝t✐♦♥s, ❈♦♥tr♦❧❧❡❞❊❧❡✲
♠❡♥ts, and ▼❛♥✉❛❧❈♦♥tr♦❧❧❡rs packages can be useful
by themselves, in any configuration that supports the
user’s model. However, to use the parameter tuning and
user experiment features of this library, a specific config-
uration of the components is required.

A tracking task model should have the standard
form shown in Figure 7, and it should be stored in-
side the ❚r❛❝❦✐♥❣❚❛s❦s package. It includes one block
from the ❋♦r❝✐♥❣❋✉♥❝t✐♦♥s✳❘❡❢❡r❡♥❝❡❙✐❣♥❛❧s, ❋♦r❝✲
✐♥❣❋✉♥❝t✐♦♥s✳❉✐st✉r❜❛♥❝❡■♥♣✉ts, and ❈♦♥tr♦❧❧❡❞❊❧❡✲
♠❡♥ts packages, each connected to the appropriate port
of a ▼❛♥✉❛❧❈♦♥tr♦❧❧❡r block. Several manual tracking
tasks from the literature are provided.

An additional component, the ❚❛s❦❙❡tt✐♥❣s block,
must be included. This block contains important details
of the tracking task: taskDuration is the total length of
the task; previewTime is the amount of time in advance

ControlledElementReferenceSignal

r(t)

w(t)

u(t)

y(t)

u(t) y(t)

DisturbanceInputTaskSettings

ManualController

r(t)

w(t)

Figure 7. Example of tracking task.

to show the target motion; and backgroundVisible de-
termines whether or not pursuit (background) informa-
tion is shown with hatch marks. The last three parame-
ters are only used in the user experiment, and not in the
parameter tuning or simulation functions.
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RunTrackingSimulation.py

RunTrackingExperiment.py

TuneControllerSimulation.py

TuneControllerExperiment.py

Options.py

OMPython

pyfmi

Pygame

matplotlib

csv

Resources/ Resources/Source/ modules

fmi.py

game.py

tools.py
mantra.py

Python 2.7

ManualTracking.mo

Modelicacalls functions in ...

provides information to ...

Figure 8. Software overview.

4 Python Functions

The previous sections have described purely Modelica-
based components that can be run from within a Model-
ica simulation environment. Two additional capabilities
are provided in the ▼❛♥✉❛❧❚r❛❝❦✐♥❣ library: automati-
cally tuning manual controller parameters, and perform-
ing real-time tracking experiments. These features are
implemented in the Python programming language.

An overview of the software is shown in Figure 8. In
the Resources/ directory, there are 5 .py files. Four of
these are function scripts that can be run from a terminal
or Python IDE, and the fifth file is Options.py, where
options are set by the user. The functions do not use in-
put arguments, and instead get them from Options.py.
Variables in this file include: taskModel, the tracking
task model to run; saveFormat, the format with which
to save backup data files; printVerbose, whether or not
to print all runtime messages to the console. The user
may also experiment with different framerates and opti-
mization/simulation methods.
Options.py also contains Boolean input arguments

for each of the four functions: useSaved makes the func-
tions use most recent saved data (in Resources/Temp/

directory) instead of re-running an experiment; plotRe-

sults generates a figure with the resulting trajecto-
ries; and saveResults saves a backup results file in the
Resources/Data/ directory. The results file contains
values for the reference state, measured state, distur-
bance input, and control input at each sample time.

Each of the four main functions call mantra.py,
which reads the ManualTracking.mo file for details
of the tracking task, and then calls functions defined in
fmi.py, game.py, and tools.py. These functions use
standard Python modules, as well as OMPython, pyfmi,
Pygame, and matplotlib. Note that OMPython requires
an installation of OpenModelica (Fritzson et al., 2005).
Additionally, pyfmi has many dependencies that must be
installed first, and it may be more convenient to install
JModelica.org (Åkesson et al., 2010) instead of installing
them individually. After all required Python modules
have been installed, the following functions should run
successfully.
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Figure 9. Plot of simulation results.

4.1 RunTrackingSimulation

This function simulates the tracking task model speci-
fied in Options.py. The simulation stop time is spec-
ified by taskDuration in the ❚❛s❦❙❡tt✐♥❣s block. All
files are saved into the Resources/Temp/ directory.
Generated files include log files, FMU build files, and
a comma-separated value (CSV) file of simulation re-
sults. If saveResults is true, this CSV file is also saved in
the Resources/Data/ directory. If plotResults is true,
then time-curves of r(t), y(t), w(t), and u(t) are plotted,
as shown in Figure 9. The Python module matplotlib is
required for this feature.

4.2 RunTrackingExperiment

This function allows the user to perform a tracking
task in real time. The tracking task model specified in
Options.py is parsed, and details of the experiment are
extracted from the ❚❛s❦❙❡tt✐♥❣s block. Next, the refer-
ence signal and disturbance input are generated by build-
ing them into separate FMUs, and simulating them for
the duration of the experiment. These signals are not af-
fected by the user input or controlled element state, and
therefore they can be simulated open loop.
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Figure 10. Display of manual tracking experiment.

Next, Pygame looks for any joysticks connected to the
computer. If no joystick is found, then the keyboard ar-
row keys may be used for control input. When a joy-
stick is used, the experiment runs more smoothly and the
parameter-fitting functions work much more effectively.
Therefore, using a joystick for the experiment is highly
recommended.

Then, two scaling factors are automatically calculated.
One is the display gain, which determines how far to
move display objects (in pixels) based on the reference
and measured state magnitudes, which are in unknown
units of length. The other is the input gain, which deter-
mines the magnitude of input to the controlled element
based on the joystick or keyboard input between -1 (full
left) and 1 (full right).

Finally, the user is prompted to start the experiment.
The tracking display is shown in Figure 10. Lines on the
top and bottom of the screen mark the global coordinates,
so that the target motion can be seen independently of
the cursor motion. These lines can be hidden to create
a compensatory task by setting backgroundVisible to
false in the ❚❛s❦❙❡tt✐♥❣s block.

Figure 10 also shows a preview of the target motion.
Future motion is indicated by circles falling from the top
of the screen. The topmost circle shows where the target
will be previewTime seconds in the future. This feature
can be disabled by setting PreviewTime to 0.

If desired, the user may adjust fundamental settings
of the game in the Resources/Source/game.py file.
Modifying these settings may cause errors, so it is a good
idea to save a backup of the game.py file before making
modifications.

4.3 TuneControllerSimulation

This function repeatedly simulates the tracking task with
different parameter values in the manual controller, and
finds values which yield the best tracking performance.
This reflects an important finding in the literature: an
experienced human operator has inherent human limita-
tions1 but behaves in a nearly optimal fashion given these
limitations.

Mathematically, the function tries to minimize the in-
tegrated squared difference between y(t) and r(t). This

1For example, reaction time delay, neuromuscular lag, and ability
to generate derivatives and higher-order leads.

is shown conceptually in Figure 11(a), where c(t) is the
continuous cost to minimize. Because tracking perfor-
mance is not a differentiable function of the controller
parameters, a derivative-free optimization method such
as the Nelder-Mead simplex method (Gedda et al., 2012)
must be used.

Some manual controller models contain many param-
eters, and attempting to tune all of them at once would
be time-consuming and would likely yield poor results.
Therefore, the user is allowed to select a subset of the
parameters using a console prompt like this:

Tunable controller parameters:

1. K -- Proportional gain

2. T2 -- Time constant of phase

lag compensation (s)

3. T1 -- Time constant of phase

lead compensation (s)

Please enter a comma-separated number

list specifying parameters to tune: _

To tune K and T1, for example, the user should type
1,3 and press Enter. The rest of the parameters are
fixed so that they remain the same as in the manual con-
troller component definition, unless they are re-assigned
in the tracking task model.

4.4 TuneControllerExperiment

This function tunes the automatic manual controller to
behave as much as possible like the human controller.
The concept is shown in Figure 11(b). The goal is
to minimize the difference between the experimentally
recorded control input, u(t), and the simulated control
input, û(t).

The input to the manual controller is the reference sig-
nal (and disturbance input, not shown in Figure 11), and
the experimentally recorded controlled element state.
Note that the tracking performance of the tuned con-
troller might be very poor, because it does not attempt to
optimize tracking performance. It simply tries to match
control behavior of the user.

4.5 Notes

• When selecting a controller model, one should con-
sider details of the real-world task and controlled-
element dynamics. The Python functions do not
check the appropriateness of a manual controller for
the given tracking conditions.

• User-created ❘❡❢❡r❡♥❝❡❙✐❣♥❛❧, ❉✐st✉r❜❛♥❝❡■♥✲
♣✉t, ❈♦♥tr♦❧❧❡❞❊❧❡♠❡♥t, and ▼❛♥✉❛❧❈♦♥tr♦❧❧❡r
classes must be stored inside the appropriate
packages. The Python functions only search in
these locations when parsing the tracking task.
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Figure 11. Tuning manual controller parameters by minimizing
∫

[c(t)]2dt.

• While the keyboard can be used for control input
in the tracking experiment, a joystick is highly rec-
ommended. The parameter tuning functions work
much better, and the display is smoother.

• Automatic syncing programs (Dropbox in particu-
lar, but possibly others) seem to cause a problem
with the real-time user experiment. Try exiting, or
at least pausing, these programs if the experiment
crashes repeatedly.

5 Example

Basic use of the Modelica library and Python functions
will now be demonstrated. Load the ▼❛♥✉❛❧❚r❛❝❦✐♥❣
library, go to the ❚r❛❝❦✐♥❣❚❛s❦s package, and simulate
one of the example tasks. Plots of ❝♦♥tr♦❧❧❡❞❡❧❡♠❡♥t✶✳②
and r❡❢❡r❡♥❝❡s✐❣♥❛❧✶✳② should resemble the top plot of
Figure 9, with the controlled element following the ref-
erence signal closely, but with a small time delay.

Next, navigate to ManualTracking/Resources/,
and open Options.py. The taskModel variable should
be assigned to one of the example tracking tasks, and
printResults should be set to true. Then run the script
RunTrackingSimulation.py, either from a Python
IDE or from a console window. A few diagnostic mes-
sages should print to the console, and then a figure sim-
ilar to Figure 9 should appear. To reduce the amount of
console output, set printVerbose to false.

If the function executed successfully, then try the real-
time experiment. Run RunTrackingExperiment.py

and wait for the reference signal and disturbance inputs
to be generated. After a short time, the console should
show this prompt:

Press ’Enter’ to bring up the display,

then press any key except ’q’ to start

the experiment: _

After following these instructions, a window simi-
lar to Figure 10 appears. Use either the arrow keys
or a joystick to make the crosshairs follow the tar-
get. Once the experiment is complete, a plot of
the state and input trajectories is shown if printRe-

sults is set to true. To examine the data file used

for this plot, go to the Resources/Temp/ directory,
and look for the comma-separated-value (CSV) file
ExampleTaskName_exp.csv. The data file for the
tracking simulation should also be in the same directory,
saved as ExampleTaskName_sim.csv.

Next, try the manual controller tuning functions. Run
the TuneControllerSimulation.py script. When
prompted, type 1,3 and press enter. The optimization func-
tion prints information about the current parameter guesses and
cost function value to the console. Within a few minutes, the
solver should converge, and parameter values for the parame-
ters should be displayed. A plot shows the simulated tracking
performance using these parameter values.

Instead of tuning parameters to yield the best tracking
performance, they can be tuned to fit experimental track-
ing performance. First, make sure useSaved is set to true
in Options.py, otherwise the user experiment will be run
again. Then run the TuneControllerExperiment.py
script. Just like in the previous example, select the parameters
you would like to tune, and the function should find their opti-
mal values and display the simulated tracking results with the
chosen controller values.

6 Conclusions

This paper presents a Modelica library and supporting func-
tions for studying human control behavior in continuous track-
ing tasks. These tools can increase Modelica’s usefulness
for modeling human-machine systems. For now, further de-
velopment, debugging, and testing on different platforms is
needed. The library is open source and available for download
at http://jjpotterkowski.github.io/.
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