
A Toolchain for Solving Dynamic Optimization Problems Using

Symbolic and Parallel Computing

Evgeny Lazutkin Siegbert Hopfgarten Abebe Geletu Pu Li

Group Simulation and Optimal Processes, Institute for Automation and Systems Engineering, Technische
Universität Ilmenau, P.O. Box 10 05 65, 98684 Ilmenau, Germany.

{evgeny.lazutkin,siegbert.hopfgarten,abebe.geletu,pu.li}@tu-ilmenau.de

Abstract

Significant progresses in developing approaches to dy-
namic optimization have been made. However, its prac-
tical implementation poses a difficult task and its real-
time application such as in nonlinear model predictive
control (NMPC) remains challenging. A toolchain is de-
veloped in this work to relieve the implementation bur-
den and, meanwhile, to speed up the computations for
solving the dynamic optimization problem. To achieve
these targets, symbolic computing is utilized for calcu-
lating the first and second order sensitivities on the one
hand and parallel computing is used for separately ac-
complishing the computations for the individual time in-
tervals on the other hand. Two optimal control problems
are solved to demonstrate the efficiency of the developed
toolchain which solves one of the problems with approx-
imately 25,000 variables within a reasonable CPU time.
Keywords: nonlinear optimization, combined multiple

shooting and collocation, symbolic manipulation, paral-

lel computing, satellite problem, combined cycle power

plant

1 Introduction

Over the last decades nonlinear model predictive control
(NMPC) has been increasingly popular for the control of
complex systems (Mayne, 2014). To carry out NMPC,
the first step is to formulate a nonlinear optimal control
problem. By using a discretization scheme over a pre-
diction horizon, it is then transformed into a constrained
nonlinear programming (NLP) problem. Finally, the re-
alization of NMPC is made by repeatedly solving this
problem online with an NLP solver which requires ap-
propriate function values and gradients. Although many
theoretical progresses on NMPC have been achieved, its
implementation for real-life applications is certainly not
trivial. Therefore, a toolchain is developed in this work
based on open-source software tools to relieve the bur-
dens in the implementation of NMPC.

A schematic description of implementing NMPC is

shown in Fig. 1. Based on the current process state
x(k) obtained through the state observer or measurement,
resp., the optimal control problem is solved in the opti-
mizer in each sample time. The resulting optimal control
strategy in the first interval u(k) of the moving horizon
is then realized through the local control system. There-
fore, an essential limitation of applying NMPC is due to
its long computation time taken to solve the NLP prob-
lem for each sample time, especially for the control of
fast systems (Wang and Boyd, 2010). In general, the
computation time should be much less than the sample
time of the NMPC scheme (Schäfer et al., 2007). Al-
though powerful methods are available, e.g. multiple-
shooting (Houska et al., 2011; Kirches et al., 2012)
and collocation on finite elements (Biegler et al., 2002;
Zavala et al., 2008; Word et al., 2014) with simultane-
ous characteristics, control parametrization (Balsa-Canto
et al., 2000; Barz et al., 2012) with sequential character-
istics, and quasi-sequential technique, (Hong et al., 2006;
Bartl et al., 2011), the computation speed is not swift
enough for very fast systems such as mechanical, elec-
trical and mechatronic systems. Therefore, it is highly
desired to further enhance the computation efficiency for
solving nonlinear dynamic optimization problems.

The combined multiple-shooting with collocation
(CMSC) method (Tamimi and Li, 2010) and the modified
multiple-shooting and collocation (MCMSC) method
(Lazutkin et al., 2014) are proved to be highly efficient.
The efficiency of this method is considerably improved
in this work with the following targets:

• to reduce the computation time by using symbolic
methods for calculating gradients, Jacobians, and
Hessians,

• to further accelerate the computation by using par-
allel computing facilities, especially for real-time
applications.

To achieve these aims, this work develops a toolchain
as described in subsequent sections. In section 2
the problem will be formulated. Section 3 illustrates
the interior-point solution method with symbolic com-
putations of first- and second-order derivatives. The

DOI
10.3384/ecp15118311

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

311

toolchain, its components, functionality, and some code
examples are presented in section 4. The efficiency of
the toolchain is demonstrated in section 5 by applying it
to a satellite control and a large-scale dynamic optimiza-
tion of a combined cycle power plant. Conclusions of the
paper are given in section 6.

2 Problem description

The nonlinear optimal control problem (NOCP) reads

min
uuu(t)

{
J = M

(
xxx(t f), t f

)
+
∫ t f

t0

L(xxx(t),uuu(t), t)dt

}

s. t. fff (ẋxx(t),xxx(t),uuu(t), t) = 000 , t0 ≤ t ≤ t f ,

xxx(t0) = x0, xxx(t f) fixed or free,

ggg(xxx(t),uuu(t), t)≤ 000, (1)

xxxmin ≤ xxx(t)≤ xxxmax,

uuumin ≤ uuu(t)≤ uuumax,

with t ∈ [t0, t f] - time, t0, t f - initial, final time, xxx(t) ∈
R

nx - state variable vector, uuu(t) ∈ R
nu - control vari-

able vector, xxx0 - initial state vector, xxx f - final state vec-
tor, fff ∈ R

nx+nu → R
nx - implicit differential equation,

J - performance index with Mayer and Lagrange term
M : Rnx+1 → R and L : Rnx+nu → R, resp., belonging
to corresponding function spaces, ggg - additional equal-
ity and/or inequality constraints, xxxmin,xxxmax,uuumin,uuumax, -
componentwise lower and upper bounds for states xxx(t)
and controls uuu(t), resp.

Envisaging the application of the modified combined
multiple shooting and collocation (MCMSC) method, a
transformation of the infinite-dimensional NOCP (1) to a
finite-dimensional nonlinear programming (NLP) prob-
lem is needed. Due to the multiple-shooting technique a
division of the whole time horizon [t0, t f] into N time in-
tervals, so called shooting intervals has to be performed.
The controls are assumed to be constant in each shooting
interval and are parametrized, i.e. the control vector is
composed as VVV = [vvv0 vvv1 . . . vvvN−1]

T , nu = nv. The states
are also discretized and parametrized at the shooting in-
terval boundaries, i.e. the vector XXX p = [xxxp,0 xxxp,1 . . . xxxp,N]
is constructed and equality constraints for continuity rea-
sons are taken into account. All other restrictions are
correspondingly discretized.

This leads to the NLP notation

min
XXX p

,VVV

{
M (xxxp,N)+

N−1

∑
i=0

∫ ti+1

ti

L(xxx(t),vvvi)dt

}

s. t. xxxp,i+1 = xxx(ti+1;xxxp,i,vvvi) , i = 0, . . . , N −1,

xxxp,0 = xxx0,

ḡgg(XXX p
,VVV)≤ 000, (2)

x̄xxmin ≤ XXX p ≤ x̄xxmax

ūuumin ≤VVV ≤ ūuumax .

Optimizer

Solving optimal
control problem

Local
control system

State
observer

Process

u(k) x(k)

Figure 1. Nonlinear model predictive control (NMPC) scheme

Due to the combined character of the approach to be ap-
plied the model equations are not directly integrated in
the NLP formulation (2) but solved to obtain the state
variables xxxp,i+1 by a collocation scheme. For detailed
description of the NOCP and its transformation to an
NLP refer to (Tamimi and Li, 2010, 2009; Lazutkin et al.,
2014).

3 Solution method

3.1 Solution of the resulting NLP problem

For simplicity reasons the NLP problem (2) is rewritten
in the compact form

min
ωωω

{J(ωωω)}

s. t. EEE(ωωω) = 000 , (3)

SSS(ωωω)≤ 000 ,

where ωωω contains all optimization variables, EEE all equal-
ity, and SSS all inequality constraints.

The NLP (4) can be solved using an interior-point
optimization solver (e. g. Ipopt (Wächter and Biegler,
2006)). Hence, the barrier function formulation of the
NLP reads

min
ω,z

{
J(ωωω)−µ

nS

∑
j=1

ln(z j)

}

s. t. EEE(ωωω) = 000, (4)

SSS(ωωω)+ zzz = 000,

with a slack variable zzz and the corresponding Lagrange
function

L (ωωω ,zzz,λλλ) = J(ωωω)−µ
nS

∑
j=1

ln(z j)+(λλλ E)T EEE(ωωω)

+(λλλ S)T (SSS(ωωω)+ zzz) (5)

A Toolchain for Solving Dynamic Optimization Problems Using Symbolic and Parallel Computing

312 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118311

for a fixed value of the barrier parameter µ . The vector
λλλ

T = [(λλλ E)T
,(λλλ S)T]∈R

nE+nS contains multipliers asso-
ciated with the nE + nS equality constraints. The iteration
scheme of the interior-point algorithm is

ωωω l+1 = ωωω l +αl ·∆ωωω l , zzzl+1 = ωωω l +αl ·∆zzzl ,

λλλ l+1 = λλλ l +αl ·∆λλλ l , l = 0,1, . . . (6)

The different search directions ∆ωωω l , ∆zzzl , ∆λλλ
E
l , ∆λλλ

S
l are

obtained applying the Newton method to the KKT opti-
mality conditions of problem (4). Let ZZZ = diag(zzz) and
eeeT = (1, . . . ,1) ∈ R

nS . Thus, the following system needs
to be solved at each iteration step

KKK ·

∆ωωω l

∆zzzl

∆λλλ
E
l

∆λλλ
S
l

=−

∇ωωωL (ωωω l ,zzzl ,λλλ l)

−µeeeT ZZZ−1
l +λλλ

S
l

EEE(ωωω l)
SSS(ωωω l)+ zzzl

 , where (7)

KKK =

∇ωωωωωωL (ωωω l ,zzzl ,λλλ l) 000 ∇EEE(ωωω l) ∇SSS(ωωω l)

000 −µZZZ−2
l 000 IIInS

∇EEE(ωωω l)
T 000 000 000

∇SSS(ωωω l)
T InS

000 000

According to (7) the gradient ∇J(ωl), Jacobians
∇EEE(ωωω l), ∇SSS(ωωω l), and Hessian matrices ∇2J(ωωω l),
∇2EEE i(ωωω l), i = 1, . . . ,nE , ∇2SSS j(ωωω l), j = 1, . . . ,nS are re-
quired and made available either analytically or approxi-
mately to the optimization solver. In the subsequent dis-
cussions the expression

HHH = ∇ωωωωωωL (ωωω l ,zzzl ,λλλ l)

= ∇2J(ωωω)+
nE

∑
i=1

λλλ
E
i ∇2EEE i(ωωω)+

nS

∑
j=1

λλλ
S
j ∇2SSS j(ωωω) (8)

will be referred as the analytic Hessian (AH).

3.2 First- and second-order sensitivities

A collocation method is used in each shooting interval
within the framework of the MCMSC approach. The
states are approximated inside each shooting interval by
a linear combination of the Lagrange polynomials (9) us-
ing a shifted Legendre collocation scheme,

x̂(t) =
nc

∑
j=1

(
nc

∏
k=1,k 6= j

t − tk

t j − tk

)
· xc

j , (9)

with x̂(t) - a polynomial approximation of a single state
variable, xc

j - the unknown collocation-coefficient at the
j-th collocation point, {t1, . . . , tnc} - collocation points in
the shooting interval [tq, tq+1]. A shifted scheme means,
that the last collocation point tnc is shifted to the right
interval border – a necessity for continuity reasons – and
the other ones are also shifted accordingly.

The derivative of the collocation polynomial reads

dx̂(t)

dt
=

nc

∑
j=1

(
dl j(t)

dt

)
xc

j (10)

with l j(t) =
nc

∏
k=1,k 6= j

t − tk

t j − tk

The parametrized states can be put into a vector XXX p,q

and the controls into a vector VVV q, where q = 1,2, . . . ,N.
The components of the vectors XXX p,q and VVV q are included
in the decision variables XXX p and VVV , respectively, in the
NLP formulation. Furthermore, the vector XXXc,q repre-
sents all collocation coefficients in the shooting interval
q. Hence, the discretized nonlinear differential equation
system results in the nonlinear algebraic equation system

GGGq = ẆWW ·XXXc,q +ẆWW 0 ·XXX
p,q

−
(t f − t0)

N
·FFF(XXXc,q

,VVV q) = 000 (11)

with q = 1,2, . . . ,N, q - index of shooting interval, N -
number of shooting intervals, FFF - discretized fff , ẆWW and
ẆWW 0 - derivative matrices of the Lagrange polynomials.

At each iteration step of the optimization procedure,
for given values XXX p,q and VVV q, (11) is solved by a New-
ton method. The results will be XXXc,q as well as the first-
and second-order sensitivities These results are utilized
in the SQP solver for calculation of the functions EEE, SSS,
the Jacobians ∇EEE, ∇SSS, and the Hessian HHH.

Neglecting the shooting interval index q and writing
(11) in a compressed form delivers

GGG(XXXc(XXX p
,VVV),XXX p

,VVV) = 000 . (12)

To obtain the first-order sensitivities, Eq. (12) has im-
plicitely to be differentiated and provides

∂GGG

∂XXXc

∂XXXc

∂
[
XXX pT VVV T

]T −
∂GGG

∂
[
XXX pT VVV T

]T = 000 . (13)

Eq. (13) represents a linear equation system. Typically,
∂GGG
∂XXXc and ∂GGG

∂ [XXX pT VVV T]
T have sparsity structures that can be

exploited in determination of ∂XXXc

∂ [XXX pT VVV T]
T .

Using (13), analytic expressions are derived in order
to calculate the second-order sensitivities. Hence, this
equation is re-written here in the following compact form

ΦΦΦ(XXXc(XXX p
,VVV),XXX p

,VVV ,

∂XXXc

∂
[
XXX pT VVV T

]T (XXX
p
,VVV)) = 000 . (14)

The derivative ∂XXXc

∂ [XXX pT VVV T]
T indicates the dependencies of

the first-order sensitivities on the decision variables XXX p

and VVV . Applying the differentiation operator ∂

∂ [XXX pT VVV T]
T

to (14) the equations for second-order sensitivities will
be available in matrix form and can be computed using
LU decomposition.

Session 4A: Optimization Applications and Methods

DOI
10.3384/ecp15118311

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

313

4 Toolchain

As mentioned above in order to offer a comfortable and
user-friendly way of modeling and optimizing physical
systems, to unburden the user from automatable tasks
like gradients and sensitivities calculations, to acceler-
ate the implementation time as well as the computa-
tion time for solving the optimization problem, the im-
plementation of the MCMSC method within an open-
source toolchain is proposed. This toolchain consists of
amongst others physically-based object-oriented model-
ing, using the modeling language Modelica with the ex-
tension Optimica, and the large scale nonlinear optimiza-
tion solver Ipopt.

4.1 Components

Compared with block-oriented modeling, the object-
oriented modeling approach provides a more comfort-
able and flexible alternative for physical systems. As a
result this work uses the modeling language Modelica
(Fritzson, 2014). Not only for simulation purposes but
also for the formulation of different optimization tasks
the platform JModelica.org is utilized. Besides the stan-
dard Modelica features JModelica.org contains the ex-
tension Optimica (Åkesson, 2008) including the possi-
bility to formulate optimal control problems and other
optimization tasks (Åkesson et al., 2010).

One essential tool utilized in many respects is the au-
tomatic differentiation tool CasADi (Andersson et al.,
2011, 2012a,b). Hence, it is applied for the calculation
of first- and second-order derivatives, symbolic manipu-
lations of the objective and the constraints.

The standard multi-processing Python module (Hell-
mann, 2011) is a next module within the toolchain to
perform parallel computations.

After adopting the optimization model to the MCMSC
framework, Ipopt (Wächter and Biegler, 2006) is respon-
sible for the solution of large scale nonlinear optimiza-
tion problems. The interoperation of the toolchain within
the optimizer (see Fig. 1) is illustrated in Fig. 2.

4.2 Functionality

After establishing an optimization model and imple-
menting it by means of Modelica and the extension Opti-
mica, the JModelica.org compiler transforms the model
into a symbolic one. From the transformed model, i.e.,
model equations, variables, etc. are accessible by the
Python scripting language.

The proposed MCMSC approach belongs to the cate-
gory of quasi-sequential methods, i.e. the interior-point
optimizer Ipopt solves in every iteration the state equa-
tions (11) and calculates the sensitivities (13) for given
parametrized states and controls of each shooting inter-
val. If the advantageous feature of an analytical Hessian
symbolically calculated by CasADi is used, also in ev-

Modelica

Libraries

Optimica

Objective

Model

Constraints

JModelica.org
Compiler

Optimization model

Symbolic Optimization model

CasADi

Ipopt

Transformed symbolic
optimization model

Evaluation

BFGSCa sADi

analytic
Hessian numeric

Multi-processing

Newton method

Ca sADi

Objective
Constraints

Collocation coefficients

Optimization
results

G
ra

di
en

ts

Ja
co

bi
an

s
Se

ns
iti

vi
tie

s

Figure 2. Parallelized MCMSC toolchain

ery iteration only the numerical values of the variables
mattering have to be updated. It is also possible that nu-
merical Hessians approximated through a BFGS formula
which usually incurs more computational effort.

The MCMSC framework consists of three main parts,
i.e. the optimizer, the calculation of state trajectories by
means of a Newton method, and the sensitivity computa-
tions. Ideally, both the Newton method and the sensitiv-
ity calculation are recommended to be executed in par-
allel in each shooting interval. Depending on the com-
puter architecture (multi-core, etc.) the user can define
the number of processes. On the one hand, one gains
computing time improvements via parallelization. On
the other hand, the communication effort increases, the
more parallel threads occur. There is a maximum speed
up depending on the size of the optimization problem and
the computer architecture.

Concerning the first-order sensitivities computations
from (13), an LU decomposition and the direct solver for
sparse matrices CSparse (Davis, 2006) are applied and
interfaced to CasADi. The second-order derivatives, if
used, are transformed to a linear equation system and
also solved by CasADi. This symbolic tool is further-
more responsible for the generation of the Jacobians, the
gradients of the objective function, and the symbolic ma-
nipulations of the objective functions and the constraints.

The entire approach of the parallelized MCMSC
method is realized in the Python scripting language using
standard multi-processing module without any additional
software packages.

A Toolchain for Solving Dynamic Optimization Problems Using Symbolic and Parallel Computing

314 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118311

Table 1. Classes and functions

(C)lass/(F)unction name Functionality
loading(object) auxiliary functions to prepare the optimization problem for Ipopt
initialization loads options and uses JModelica.org to extract

the optimization problem from Modelica/Optimica.
extract prepares the optimization problem
define_collocation constructs Lagrange polynomials and derivative matrices
construct_vars creates vectors of discretization
discretize implicit DAE discretization
create_solvers creates for each interval the Newton solver

and solvers for first-order derivatives
interval_simulation simulates the DAE system for given parameters
constr_vec constraints vector for Ipopt
jacobian_of_constraint_vector Jacobian for Ipopt
create_cost objective for Ipopt
prep_ipopt required information for Ipopt,

e.g. number of non-zeros in Jacobians, boundaries
prep_sys_for_multiproc divide the system according to the number of cores
optimize solve the optimization problem by Ipopt
exact_hessian construct exact Hessian and corresponding linear solvers
scaling scale the problem

4.3 Source code examples

Different classes and functions shown in Tab. 1 are
realized dedicated to certain purposes. In particu-
lar, there are several important issues in the MCMSC
toolchain. A brief description is given below with
some source code fragments. Using JModelica.org the
formulated optimization problem can be easily trans-
ferred for further manipulations using the function
transfer_optimization_problem, which has
two attributes: name is an optimization problem file and
file_path is a path to this file. Let OP be the sym-
bolic representation of the dynamic optimization prob-
lem, which includes all required information. To see the
list of functions and methods for the OP variable, users
have to refer to the JModelica.org source code files.

The proposed toolchain requires a lot of functions
from CasADi. For simplification, functionality of
this software will be made completely available in the
toolchain by importing all CasADi classes.

The first essential aspect is to get information about
the declared variables (differential and algebraic states,
controls, parameters) in the optimization problem for-
mulation. The following has been implemented by the
developer:

Differential states

DIFF = OP.getVariables(...

OP.DIFFERENTIATED)

Algebraic states

ALG = OP.getVariables(...

OP.REAL_ALGEBRAIC)

Derivatives

DER = OP.getVariables(OP.DERIVATIVE)

Controls

INPUT = OP.getVariables(OP.REAL_INPUT)

Parameters

P_I = OP.getVariables(...

OP.REAL_PARAMETER_INDEPENDENT)

P_D = OP.getVariables(...

OP.REAL_PARAMETER_DEPENDENT)

In order to extract model dynamics, the OP variable has
specific function to get DAEs, which returns a residual
between left and right hand sides of the equations.

DAE = OP.getDaeResidual()

For further manipulations with the extracted DAE, the
symbolic function using CasADi has to be established.
To achieve this goal, all variables should be aggregated
into an input vector.

MX_DAE = MXFunction(LIST_DER + ...

LIST_DIFF + LIST_ALG + ...

LIST_INPUT + P_I + P_D, [DAE])

MX_DAE.init()

Since JModelica.org works with the MX data type
and the proposed toolchain accepts currently the SX data
type, the MXFunction can be converted to SXFunction:

SX_DAE = SXFunction(MX_DAE)

SX_DAE.init()

For further information about data types in CasADi
refer to the manual.

Session 4A: Optimization Applications and Methods

DOI
10.3384/ecp15118311

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

315

The function SX_DAE should be called with two argu-
ments, the SX symbolic expression (converted from MX)
and the scaled DAE system (with respect to the interval
length).

SX_DAE_NUM = SX_DAE.call(...

SX_INPUTS_DAE)[0]

SX_DAE_FUNCTION = SXFunction(...

[vertcat(SX_INPUTS_DAE)], ...

[LENGTH*SX_DAE_NUM])

SX_DAE_FUNCTION.init()

This function SX_DAE_FUNCTION is involved in the
discretization procedure, since it declares the variable or-
der and accepts symbolical evaluation.

For the discretization of the model equations, addi-
tional variables should be introduced,

Piecewise control

CTRL = SX.sym("c",N_INT*N_C)

Parameterized states

P_S_P = SX.sym("ps",(N_INT+1)*(N_D))

Collocated differential

and algebraic states

S_P = SX.sym("s", ...

N_INT*((N_D + N_A)*NCP))

where N_INT is the number of shooting intervals de-
fined by the user, N_D, N_A, and N_C are the numbers
of differential, algebraic, and control variables.

For each shooting interval, certain variables are
chosen from vectors CTRL, P_S_P, and S_P. The
SX_DAE_FUNCTION is called with these variables and
the evaluation results are placed into RES variable. This
procedure should be called for each interval.

RES = SX_DAE_FUNCTION.call(...

[vertcat([der, diff, alg, ctrl, ...

p_i_v, p_d_v])])[0]

As mentioned before, the state trajectories and sensi-
tivities have to be calculated for each interval. For this
purpose, the toolchain uses Newton and LU solvers from
CasADi.

Newton solver

interval_dae - discretized DAE

system for one interval

variables - states at collocation

points

parameters - parametrized states

and controls

F = SXFunction(...

[vertcat([variables]), ...

vertcat([parameters])], ...

[vertcat([interval_dae])])

solver = ImplicitFunction("newton",F)

solver.setOption("linear_solver", ...

"csparse")

solver.setOption("abstol",1e-12)

solver.init()

LU solver

NCP - number of collocation points

SYSTEM_INDEX = (N_D + N_A)*NCP

Full Jacobian

partial_jacobian=interval_dae.jac()

dGdX_sym = partial_jacobian[...

range(SYSTEM_INDEX), ...

range(SYSTEM_INDEX)]

LHS = MX.sym(’LHS’, ...

dGdX_sym.sparsity())

dGdXp_dU_sym = partial_jacobian[...

range(SYSTEM_INDEX), ...

SYSTEM_INDEX:SYSTEM_INDEX+N_D+N_C]

RHS = MX.sym(’RHS’, ...

dGdXp_dU_sym.sparsity())

LUSolver = solve(LHS,RHS,"csparse")

FRHS = MXFunction(...

[LHS,RHS],[LUSolver])

FRHS.init()

The optimization constraints vector and the corre-
sponding Jacobian matrix, objective function and its gra-
dient are also constructed by means of CasADi using
symbolic manipulation. For the sake of brevity, these
details are not discussed here.

Corresponding to the number of the user-defined pro-
cesses in the case of a multi-core CPU, shooting intervals
can be equally distributed between them.

After problem initialization, the Ipopt instance is cre-
ated to solve the optimization problem:

import pyipopt

nlp = pyipopt.create(args)

x_opt = nlp.solve(initialGuess)

5 Examples

Showing the efficiency of the proposed approach a small-
scale and a large-scale problem are presented. All com-
putations are performed on a stand-alone personal com-
puter with Intel R© I7 4.4 GHz, 6 cores, 16 GB RAM with
Ubuntu 14.04.1 Server x64 operational system.

5.1 Satellite control problem

This nonlinear optimal control problem is devoted to the
calculation of the optimal control and the concluding op-
timal torques according to a Bolza functional that bring
the satellite to rest after an initial tumbling motion. The
problem is listed e.g. in (Rudquist and Edvall, 2009).

The optimal states are shown in Figs. 3 and 4, where
the state x8 represents the integrand of the Lagrange
term. The optimal controls are contained in Fig. 5. The
time horizon corresponds to 100 seconds and is divided

A Toolchain for Solving Dynamic Optimization Problems Using Symbolic and Parallel Computing

316 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118311

0 10 20 30 40 50 60
0.1

0.0

0.1

0.2

0.3

0.4

0.5

x
1

0 10 20 30 40 50 60
0.00

0.05

0.10

0.15

0.20

0.25

x
2

0 10 20 30 40 50 60
0.02

0.00

0.02

0.04

0.06

0.08

0.10

x
3

0 10 20 30 40 50 60
0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

x
4

Figure 3. Optimal states x1(t) to x4(t)

0 10 20 30 40 50 60
0.0100

0.0101

0.0102

0.0103

0.0104

0.0105

x
5

0 10 20 30 40 50 60
0.00475

0.00480

0.00485

0.00490

0.00495

0.00500

0.00505

x
6

0 10 20 30 40 50 60
0.0010

0.0015

0.0020

0.0025

0.0030

x
7

0 10 20 30 40 50 60
0.000

0.005

0.010

0.015

0.020

0.025

x
8

Figure 4. Optimal states x5(t) to x8(t)

into 60 intervals. Figs. 3 - 5 show the correct results. The
optimal objective value is in every scenario J∗ = 0.4639.

Data being constant through all scenarios are listed in
Tab. 2. In case of the utilization of the analytical Hes-
sians the number of non-zero elements in the Hessian of
the Lagrangian equals to 3,960.

Tab. 3 shows the speed-up in different scenarios. In
this small-scale problem the effect of parallelization is
not substantial, but the number of iterations can be re-
duced and thus the computation time is less in most
cases.

In a first case, comparing the speed-up by paralleliza-

tion within the same computation scheme for the Hessian

(column s1), i. e. considering the first and the second row
in the column s1 in BFGS, AH, and AHC case, resp., the
speed-up factors s1 reach from 1.08 (AHC), 1.33 (BFGS)
to 1.56 (AH).

In the second case, comparisons are dedicated to the
non-parallelized versions (column s2) contrasting the
Hessian calculation methods to each other. Unsurpris-
ingly, no speed-up is achieved (AH/nc = 1/s2 = 0.71) due
to the fact that the symbolic calculations take time to es-

0 10 20 30 40 50 60
0.000

0.005

0.010

0.015

0.020

0.025

u
1

0 10 20 30 40 50 60
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

u
2

0 10 20 30 40 50 60
0.000

0.005

0.010

0.015

0.020

0.025

0.030

u
3

Figure 5. Optimal controls u1(t) to u3(t)

Table 2. Satellite control problem dimensions

Number of . . . Value
intervals 60
non-zeros in Jacobians of eqs. 5,768
non-zeros in Jacobians of ineqs. 0
non-zeros in Hessian of Lagrangian 3,960
equality constraints 480
inequality constraints 0
variables 668
variables incl. Newton variables 2,108

Table 3. Speed-up by parallelization and utilization of analytic
Hessian

Hess. nc It. tΣ [s] s1 s2 s3

BFGS
1 8 0.515 1.00 1.00 N/A
6 8 0.355 1.33 N/A 1.00

AH
1 5 0.723 1.00 0.71 N/A
6 5 0.462 1.56 N/A 0.77

AHC
1 5 0.346 1.00 1.49 N/A
6 5 0.320 1.08 N/A 1.11

Hess.: BFGS - approximated Hessian, AH - analytic
Hessian (updated in every iteration of the optimizer),
AHC - analytic Hessian (calculated once in iteration 0);
nc - no. of CPU cores (nc = 1: no parallelization), It.
- no. of iterations, tΣ - total CPU time (mean value of
100 runs), si, i = 1,2,3 - speed-up factors, N/A - not
applicable

Session 4A: Optimization Applications and Methods

DOI
10.3384/ecp15118311

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

317

tablish the analytic Hessian. But, calculating the Hessian
only once in the start iteration and leaving it constant
through the iteration process also delivers the correct
result with the risk that search direction could be non-
descent, and the speed-up amounts to 1.49 (AHC/nc =
1/s2 = 1.49).

The third case considers the parallelized versions (col-

umn s3), also contrasting the Hessian calculation meth-
ods to each other. The computation with the BFGS ap-
proximation constitutes the reference. As to be expected
in this small-scale example, one gets also no speed-up
in the parallelized versions (AH/nc=4/s3 = 0.77) from
BFGS approximation to analytic Hessian calculation.
However, confronting BFGS with AHC, the speed-up ac-
counts to 1.11 (AHC/nc = 4/s3 = 1.11).

5.2 Combined cycle power plant start-up

control problem

Another example, a combined cycle power plant (CCPP)
was chosen for several reasons. Firstly, this is an exam-
ple of interest in the liberalized energy market, because
classical power plants have to be adopted to the opera-
tion of electrical energy supply networks with renewable
energies. Thus, they are more often set into operation
or shutdown than in the past. Secondly, it is a high-
dimensional problem compared with other academic ex-
amples. Thirdly, the example is used for the verification
of the achieved results. In (Casella and Pretolani, 2006)
the system was introduced. The plant is composed of a
gas turbine unit, heat recovery steam generator, a steam
turbine, and a condenser. The start-up time is limited
due to the following facts: a maximum load change rate
of the gas turbine, the thermal stress in the thick com-
ponents (e.g. steam turbine shafts), and limited control
variables.

Several authors used the object-oriented implemented
model for the optimal control of the start-up process. In
(Casella et al., 2011a) a simplified model is used. The
contribution (Casella et al., 2011b) reports on a solution
using JModelica.org, CppAD for automatic differentia-
tion, and Ipopt for the NLP solution. The integration
of CasADi and JModelica.org is described in (Anders-
son et al., 2011), where the CCPP system is also used
as a benchmark system, but the solution is achieved by
a direct collocation approach. An approach with Open-
Modelica and an optimization language specification,
CasADi as the automatic differentiation tool, and dif-
ferent optimization methods including direct collocation
and direct multiple shooting, is shown in (Shitahun et al.,
2013). A parallel multiple shooting and a collocation op-
timization, performed with OpenModelica, is explained
in (Bachmann et al., 2012). That paper discusses multi-
ple shooting, multiple collocation, and total collocation
methods using up to 8 cores of a multi-core CPU with
OpenMP support. In (Ruge et al., 2014) the authors out-
line a toolchain including modeling with OpenModelica,

0 10 20 30 40 50 60
0.6

0.8

1.0

1.2

1.4

1.6

1.8

E
v
a
p
o
ra

to
r

p
re

ss
u
re

0 10 20 30 40 50 60
Time intervals

0.0

0.2

0.4

0.6

0.8

1.0

Lo
a
d

Figure 6. Optimal pressure and load

Table 4. CCPP problem dimensions

Number of . . . Value
intervals 60
non-zeros in Jacobians of eqs. 7,210
non-zeros in Jacobians of ineqs. 104,940
non-zeros in Hessian of Lagrangian 3,960
equality constraints 610
inequality constraints 9,540
variables 670
variables incl. Newton variables 24,790

but using automatic differentiation by ADOL-C.
The approach and toolchain discussed in our paper

uses a modified combined multiple shooting and col-
location (MCMSC) method, CasADi for automatic dif-
ferentiation, JModelica.org for modeling and formula-
tion of the optimization problem by means of Optimica,
and Ipopt as NLP solver. Thus, a direct comparison to
the contributions mentioned above is not possible due to
different models, approaches, time horizons, tools, and
computers used. Therefore, the only direct comparison
between MCMSC and collocation method on finite ele-
ments using JModelica.org is given in Tab. 5.

Exemplarily, one of the essential optimal states (evap-
orator pressure) and the control (normalized load) are
shown in Fig. 6 above and below, resp., over 60 time
intervals corresponding to 4,000 seconds operation time,
indicating the right behavior.

Data being constant through all scenarios are listed in
Tab. 4. Using the analytical Hessians the number of non-
zero elements in the Hessian of the Lagrangian equals to
3,960. Tab. 5 shows the acceleration of computation time
in most cases.

Concerning this large-scale problem, the gain
achieved by parallelization within the same computation

method for the Hessian (column s1) is better than in the
small-scale problem above. Comparing the first and the
second row in the column s1 in each case (BFGS, AH,

A Toolchain for Solving Dynamic Optimization Problems Using Symbolic and Parallel Computing

318 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118311

Table 5. Speed-up by parallelization and utilization of analytic
Hessian – comparison with collocation approach

MCMSC approach

Hess. nc It. tO [s] tSN [s] s1 s2 s3

BFGS
1 47 5.578 8.887 1.00 1.00 N/A
6 47 5.585 4.509 1.97 N/A 1.00

AH
1 35 2.032 27.612 1.00 0.32 N/A
6 35 2.038 12.530 2.20 N/A 0.36

AHC
1 34 1.044 7.112 1.00 1.25 N/A
6 34 1.066 5.114 1.39 N/A 0.88

Collocation approach

Hess. nc It. tC [s] sCMP

BFGS 1 54 11.446 1.13

AH 1 60 7.892 0.54
AHC 1 77 6.299 1.02

Hess.: BFGS - approximated Hessian, AH - ana-
lytic Hessian (updated in every iteration), AHC -
analytic Hessian (calculated once in iteration 0); nc -
no. of CPU cores, It. - no. of iterations, tO - CPU time
for optimization by Ipopt (not parallelizable), tSN - CPU
time for sensitivity calculation and Newton solver, tC
- CPU time for pure collocation on finite elements;
(all CPU times are averages of 100 runs), si, i = 1,2,3
- speed-up factors, sCMP - speed-up factor between
collocation (CM) and parallelized MCMSC method,
N/A - not applicable

and AHC, resp.), the speed-up factors s1 reach from 1.39
(AHC), 1.97 (BFGS) to 2.20 (AH) referred to tSN .

In the second case, the non-parallelized versions (col-

umn s2) are under consideration referring the Hessian
calculation methods to each other. Here, a speed-up is
only achieved in the AHC case (AHC/nc = 1/s2 = 1.25).

The third comparison evaluates the parallelized ver-

sions (column s3), again contrasting the Hessian calcu-
lation methods to each other. Here, no speed-ups are
achieved. Nevertheless, considering the optimization
time tO in the AH and AHC case compared with the
BFGS case, it is significantly reduced by factors of 2.74
and 5.24, resp., because of conducive matrix structures.

To have at least one comparison on the same com-
puter of the MCMSC method with collocation method
(CM) on finite elements used in JModelica.org the lower
part in Tab. 5 was added. In the parallelized version
of the MCMSC method both the BFGS (BFGS/nc =
6/tO + tSN = 10.094) and the AHC scenario (AHC/nc =
6/tO + tSN = 6.180) are faster than the non-parallelized
version of the CM.

The investigations and presented results show that the
presented parallelized MCMSC approach is a power-
ful solution technique solving optimal control problems
within the proposed toolchain. The number of iterations
are reduced compared with both the non-parallelized
cases and the collocation approach, but the effort in one

iteration is typically higher if the analytic Hessian is
used. The approach can most advantageously be applied
to large-scale optimization problems.

6 Summary and Conclusions

An optimal control problem needs to be solved online
in NMPC. This poses a challenge in the implementation
of the numerical algorithms and the enhancement of the
computation efficiency for the dynamic optimization ap-
proach. In this work, a toolchain for solving nonlinear
dynamic optimization problems is developed based on
the combined multiple shooting and collocation method.
The toolchain is implemented in open-source software
and both the first and the second-order sensitivities are
automatically computed. As a result, the user needs only
to provide the defined optimal control problem for im-
plementing NMPC. In addition, parallel computing is re-
alized for performing the computations in the individual
time intervals, thus leading to a reasonable reduction of
the computation time. The results of two case studies
show the capability of the toolchain for efficiently solv-
ing small to large-scale dynamic optimization problems.

In future, it is planned to offer a web-based optimiza-
tion service for solving nonlinear dynamic optimization
problems using the proposed approach.

7 Acknowledgments

The authors are grateful for the support of the ITEA2/
EUREKA Cluster programme by the European Com-
mission (project no. 11004, Model Driven Physical Sys-
tems Operation (MODRIO)) and for the financing by
German Ministry of Education and Research (BMBF,
Förderkennzeichen: 01IS12022H).

References

J. Åkesson. Optimica – an extension of Modelica supporting
dynamic optimization. In Proc. 6th Int. Modelica Conf.,
pages 57–66. Modelica Association, March 3-4 2008.

J. Åkesson, K.-E. Årzén, M. Gåfvert, T. Bergdahl, and
H. Tummescheit. Modeling and optimization with Optimica
and JModelica.org-languages and tools for solving large-
scale dynamic optimization problems. Comput. Chem. Eng.,
34(11):1737–1749, 2010.

J. Andersson, J. Åkesson, F. Casella, and M. Diehl. Integration
of CasADi and JModelica.org. In Proc. 8th Int. Modelica

Conf., pages 218–231, 2011. doi:10.3384/ecp11063.

J. Andersson, J. Åkesson, and M. Diehl. Dynamic optimiza-
tion with CasADi. In 51st IEEE Conference on Deci-

sion and Control, pages 681–686, 10-13 December 2012a.
doi:10.1109/CDC.2012.6426534.

Session 4A: Optimization Applications and Methods

DOI
10.3384/ecp15118311

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

319

J. Andersson, J. Åkesson, and M. Diehl. CasADi: A symbolic
package for automatic differentiation and optimal control.
Lect. Notes Comput. Sci. Eng., 87:297–307, 2012b.

B. Bachmann, L. Ochel, V. Ruge, M. Gebremedhin, P. Fritz-
son, V. Nezhadali, L. Eriksson, and M. Sivertsson. Parallel
multiple-shooting and collocation optimization with Open-
Modelica. In Proc. 9th Int. Modelica Conf., pages 659–668,
2012.

E. Balsa-Canto, J. R. Banga, A. A. Alonso, and V. S. Vas-
siliadis. Efficient optimal control of bioprocesses using
second-order information. Ind. Eng. Chem. Res., 39(11):
4287–4295, 2000. doi:10.1021/ie990658p.

M. Bartl, P. Li, and L. T. Biegler. Improvement of state profile
accuracy in nonlinear dynamic optimization with the quasi-
sequential approach. AIChE J., 57(8):2185–2197, 2011.
doi:10.1002/aic.12437.

T. Barz, R. Klaus, L. Zhu, G. Wozny, and H. Arellano-Garcia.
Generation of discrete first- and second-order sensitivities
for single shooting. AIChE J., 58(10):3110–3122, 2012.

L. T. Biegler, A. M. Cervantes, and A. Wächter. Advances in
simultaneous strategies for dynamic process optimization.
Chem. Eng. Sci., 57(4):575–593, 2002.

F. Casella and F. Pretolani. Fast Start-up of a Combined-Cycle
Power Plant: a Simulation Study with Modelica. In Proc.

5th Modelica Conf., pages 3–10, 2006.

F. Casella, F. Donida, and J. Åkesson. Object-Oriented Mod-
eling and Optimal Control: A Case Study in Power Plant
Start-Up. In Prepr. 18th IFAC World Congress. Milano.

Italy, pages 9545–9554, 2011a.

F. Casella, M. Farina, F. Righetti, R. Scattolini, D. Faille,
F. Davelaar, A. Tica, H. Gueguen, and D. Dumur. An
optimization procedure of the start-up of Combined Cycle
Power Plants. In Prepr. 18th IFAC World Congress. Milano.

Italy, pages 7043–7048, 2011b.

T. A. Davis. Direct methods for sparse linear systems. SIAM,
2006.

P. Fritzson. Principles of object-oriented modeling and simula-

tion with Modelica 3.3: A cyber-physical approach. Wiley-
IEEE Press, 2014.

D. Hellmann. The Python standard library by example.
Addison-Wesley Professional, 1st edition edition, 2011.

W. R. Hong, S. Q. Wang, P. Li, G. Wozny, and L. T. Biegler.
A quasi-sequential approach to large-scale dynamic op-
timization problems. AIChE J., 52(1):255–268, 2006.
doi:10.1002/aic.10625.

B. Houska, H. J. Ferreau, and M. Diehl. An auto-generated
real-time iteration algorithm for nonlinear MPC in the mi-
crosecond range. Automatica, 47(10):2279–2285, 2011.

C. Kirches, L. Wirsching, H. G. Bock, and J. P. Schlöder. Effi-
cient direct multiple shooting for nonlinear model predictive
control on long horizons. J. Process Contr., 22(3):540–551,
2012.

E. Lazutkin, A. Geletu, S. Hopfgarten, and P. Li.
Modified multiple shooting combined with collocation
method in JModelica.org with symbolic calculations. In
Proc. 10th Int. Modelica Conf., pages 999–1006, 2014.
doi:10.3384/ECP14096999.

D. Q. Mayne. Model predictive control: Recent developments
and future promise. Automatica, 50(12):2967–2986, 2014.

P. E. Rudquist and M. M. Edvall. PROPT - Matlab Optimal
Control Software. User’s Guide. TOMLAB Optimization,
2009.

V. Ruge, W. Braun, B. Bachmann, A. Walther, and K. Kul-
shreshtha. Efficient Implementation of Collocation Meth-
ods for Optimization using OpenModelica and ADOL-C.
In Proc. 10th Int. Modelica Conf., pages 1017–1025, 2014.
doi:10.3384/ECP140961017.

A. Schäfer, P. Kühl, M. Diehl, J. Schlöder, and H. G. Bock.
Fast reduced multiple-shooting method for nonlinear model
predictive control. Chem. Eng. Process., 46(11):1200–
1214, 2007.

A. Shitahun, V. Ruge, M. Gebremedhin, B. Bachmann,
L. Eriksson, J. Andersson, M. Diehl, and P. Fritzson.
Model-Based Dynamic Optimization with OpenModel-
ica and CasADi. In 7th IFAC Symp. on Advances in

Automotive Control, volume 1, pages 446–451, 2013.
doi:10.3182/20130904-4-JP-2042.00166.

J. Tamimi and P. Li. Nonlinear model predictive control
using multiple shooting combined with collocation on fi-
nite elements. In 7th IFAC Int. Symp. on Advanced

Control of Chemical Processes, pages 703–708, 2009.
doi:10.3182/20090712-4-TR-2008.00114.

J. Tamimi and P. Li. A combined approach to nonlinear model
predictive control of fast systems. J. Process Contr., 20(9):
1092–1102, 2010.

A. Wächter and L. T. Biegler. On the implementation of a
primal-dual interior point filter line search algorithm for
large-scale nonlinear programming. Math. Program., 106
(1):25–57, 2006.

Y. Wang and S. Boyd. Fast model predictive control using
online optimization. IEEE T. Contr. Syst. T., 18(2):267–278,
2010.

D. P. Word, J. Kang, J. Åkesson, and C. D. Laird. Efficient
parallel solution of large-scale nonlinear dynamic optimiza-
tion problems. Comput. Optim. Appl., 59(3):667–688, 2014.
doi:10.1007/s10589-014-9651-2.

V. M. Zavala, C. D. Laird, and L. T. Biegler. Interior-point de-
composition approaches for parallel solution of large-scale
nonlinear parameter estimation problems. Chem. Eng. Sci.,
63(4834-4845):19, 2008.

A Toolchain for Solving Dynamic Optimization Problems Using Symbolic and Parallel Computing

320 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118311

