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Abstract

Modelica 3.3 introduced dedicated built-in language sup-
port for state machines that was inspired by semantics
known from Statechart and mode automata formalisms.
The specification describes the semantics of these con-
structs in terms of data-flow equations that allows it to
be related to the Modelica DAE representation which is
the conceptual intermediate format of Modelica code af-
ter instance creation (flattening). However, a complete
transformation of state machine constructs into data-flow
equations at the stage of flattening requires an early com-
mitment to implementation details that potentially hin-
ders model optimizations at subsequent translation phases.
Also, due to the required substantial model transformation
the semantic distance between the original source model
and the flattened representation is rather large. Hence, this
paper proposes a more versatile symbolic representation
for flattened state machine constructs that preserves the
state machine’s composition structure and allows postpon-
ing optimizations to subsequent compiler phases.
Keywords: state machine, mode automata, flattening,

compilation

1 Introduction

The scope of the Modelica specification is briefly stated in
(Modelica Association, 2012, Section 1.2):

The semantics of the Modelica language is
specified by means of a set of rules for trans-
lating any class described in the Modelica lan-
guage to a flat Modelica structure. A class must
have additional properties in order that its flat
Modelica structure can be further transformed
into a set of differential, algebraic and discrete
equations (= hybrid DAE). Such classes are
called simulation models.

A typical compilation process for a Modelica language
tool is structured as depicted in Figure 1. Flat Modelica

is an intermediate representation which is further elabo-
rated into a representation from which optimized simula-
tion code can be generated. Conceptually, flat Modelica

Front-end
 parsing & 
 instantiation

Modelica model

Flat Modelica
"Hybrid DAE"

Simulation
executable

Back-end
 sorting & 
 optimization &
 code generation

C code

C Compiler

Figure 1. Outline of a typical compilation process for a Model-
ica language tool.

is closely related to a hybrid DAE (hybrid Differential Al-
gebraic Equation) representation. This relationship is dis-
cussed in (Modelica Association, 2012, Appendix C). The
mapping from flat Modelica to a hybrid DAE is a power-
ful concept, since it provides a mathematical foundation
for the semantics of flat Modelica.

Modelica 3.3 introduced dedicated built-in language
support for clocked state machines that was inspired by
semantics known from Statechart (Harel, 1987) and mode

automata formalisms (Maraninchi and Rémond, 2003),
particularly the mode automata variant implemented in the
Lucid Synchrone 3.0 language (Pouzet, 2006).

The Modelica specification describes the semantics of
state machines by a set of rules that allows relating state
machines to purely data-flow based Modelica code (Mod-
elica Association, 2012, Chapter 17)1. Hence, state ma-
chine constructs are reduced to data-flow equation con-
structs for which the flattening process is already de-
scribed in other parts of the language specification.

From this perspective it is natural to perform a com-
plete transformation of state machine constructs to data-

1A more accessible presentation of Modelica state machines with
additional examples can be found in (Fritzson, 2014, Chapter 13).
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flow equations during the flattening process, so that the
resulting flat Modelica can be directly related to a flat hy-
brid DAE. However, a complete transformation of state
machine constructs into data-flow equations at the stage
of flattening requires an early commitment to implementa-
tion details. This commitment makes model optimizations
more difficult at subsequent translation phases. Addition-
ally, the required substantial model transformation renders
the semantic distance between the source code and the flat-
tened representation rather large which reduces the value
of flat Modelica as a traceable human checkable interme-
diate model representation.

2 State Machine Flattening in Cur-

rent Tools

At the time of writing, only Dymola2 provides full sup-
port for Modelica state machines. A presentation about
an early (incomplete) prototype implementation for Open-
Modelica3 was given in the OpenModelica Annual Work-
shop (Thiele, 2015). The flat Modelica code resulting
from State Machines in Dymola resembles the code gen-
erated by the above-mentioned OpenModelica prototype.

The simple state machine example presented in the
original Modelica state machine paper by Elmqvist et al.
(2012) is reused for illustrating the relation between the
state machine Modelica code and the generated flat Mod-
elica representation. Figure 2 shows the graphical repre-
sentation of that state machine as well as a plot of its vari-
able i for 30 seconds of simulation. The state machine

inner Integer i(start=0);

state1

outer output Integer i;

i = previous(i) + 2;

state2

outer output Integer i;
i = previous(i) - 1;

i > 10

i < 1

(a) Graphical representation.
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(b) Plot of variable i.

Figure 2. Simple state machine.

extension is based on Modelica’s synchronous language
elements extension. The discrete-time equations within a
state machine are based on clocked variables and all vari-
ables and equations within it must be associated with the
same clock. The semantics are:

• Equations are active at clock ticks generated by the
clocks associated with the equations. If no clock is
associated a default clock is used. In the example of
Figure 2 the default clock used is a periodic clock
with 1.0s sampling period.

2http://www.dymola.com/
3https://www.openmodelica.org/

• The variable i is a shared variable between the two
states state1 and state24.

• The example uses “delayed” transitions5, hence the
transitions do not fire immediately if the associated
condition on i evaluates to true. Instead they fire at
the subsequent clock tick.

• Furthermore, the transitions are declared as “reset”
transitions6. Reset transitions reinitialize the “states”
of their target states, i.e., set the values of the state
variables “owned” by those states to their start values
and reset nested state machines. Within the consid-
ered example state1 and state2 declare access to the
outer state variable i. Outer variables are not reset if
entering the state. Hence, for the considered example
it makes no difference whether or not a transitions is
a “reset” transition.

The Modelica model (ignoring annotations) that corre-
sponds to the graphical representation of Figure 2 is dis-
played in Listing 1.

Listing 1. Modelica model corresponding to Figure 2.

model SimpleSM "Simple state machine"

inner Integer i(start=0);

block State1

outer output Integer i;

equation

i = previous(i) + 2;

end State1;

State1 state1;

block State2

outer output Integer i;

equation

i = previous(i) - 1;

end State2;

State2 state2;

equation

transition(state1,state2,i > 10,

immediate=false,reset=true,

synchronize=false,priority=1);

transition(state2,state1,i < 1,

immediate=false,reset=true,

synchronize=false,priority=1);

initialState(state1);

end SimpleSM;

The flat Modelica representation generated by Dy-
mola 2015 FD01 is reproduced in a slightly reformatted
form (to save space) in Listing 2. Note that there is a dis-
crepancy between the number of variables (three) and the

4The “outer” prefix declares that an element instance with the same
name, but using prefix “inner” within the enclosing instance hierarchy
is referenced.

5 Delayed transitions are depicted by a perpendicular line close to
the “from"-state. For immediate transitions this line is close to the “to”-
state.

6Reset transitions are depicted by a filled arrow head (otherwise an
open arrow head is used).
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Listing 2. Flat Modelica model generated from the simple state
machine model defined in Listing 1.

model SimpleSM

Integer i(start = 0);

Integer state1.i = i;

Integer state2.i = i;

// Equations and algorithms

// Component state1

// class SimpleSM.State1

equation

state1.i = previous(state1.i)+2;

// Component state2

// class SimpleSM.State2

equation

state2.i = previous(state2.i)-1;

// Component

// class SimpleSM

equation

transition(state1,state2,i > 10,

false,true,false ,1);

transition(state2,state1,i < 1,

false,true,false ,1);

initialState(state1);

end SimpleSM;

number of equations (four). This imbalance is solved by
the state machine semantics that require that outer output
variables of each state are solved for and that for each such
variable a single definition is formed. Hence, after substi-
tuting the alias variables in the example and merging outer
variables this can be reduced to one variable and one equa-
tion, e.g.,

i := if activeState(state1) then

previous(i)+2

elseif activeState(state2) then

previous(i)-1 else previous(i)

The last else branch can never be reached in this particular
example, but it illustrates that a state variable will simply
keep its current value if there is no state active in which an
equation for that variable is defined.

Deducing the equation transformation above from the
flat Modelica representation is an essential step for relat-
ing flat Modelica to a valid DAE representation. Arguably,
the information about this necessary equation transforma-
tion is present in the flat Modelica in a highly implicit
fashion which is not only elusive for human perception,
but also difficult to reason about mechanically.

One can deduce that state1 and state2 are states and
that state1.i and state2.i are variables declared in the
respective states. However, in the flat representation it is
not obvious that they are shared variables and that two of
their defining equations need to be merged into a single

definition to form a valid system of equations (otherwise
there is one equation too many).

As an example of this ambiguity in the flat representa-
tion consider the invalid model from Listing 3 that actu-
ally has one equation too many, but still has (apart from
some comments) the same flattened representation as the
simple state machine model from Listing 1 (compare the
respective flat Modelica representations in Listing 4 and
Listing 2). Trying to simulate the model from Listing 3

Listing 3. Invalid Modelica code that has a similar flat represen-
tation as the (valid) code from Listing 1.

model InvalidSM "Invalid model, but

instructive flat representation"

inner Integer i(start = 0);

block State1

input Integer i; // no shared variable!

end State1;

State1 state1(i=i);

block State2

input Integer i; // no shared variable!

end State2;

State2 state2(i=i);

equation

// one equation too many

state1.i = previous(i) + 2;

state2.i = previous(i) - 1;

transition(state1,state2,i > 10,

immediate=false,reset=true,

synchronize=false,priority=1);

transition(state2,state1, i < 1,

immediate=false,reset=true,

synchronize=false,priority=1);

initialState(state1);

end InvalidSM;

in Dymola fails with a (correct) error message complain-
ing about more Integer equations than Integer variables
(Dymola still generates the flat Modelica representation
for the model since the model can be instantiated, but it
cannot be translated due to the overconstrained equation
system).

The important point is that solely by inspecting the flat
Modelica representation that Dymola generates it is not
obvious whether it corresponds to a valid or an invalid
model: the flat Modelica representation in Listing 4 is,
apart from additional comments, similar to the flat Mod-
elica representation in Listing 2.

This example should illustrate that it is quite intricate to
give the correct semantics of flat Modelica state machine
representations generated by current Modelica tools. The
example used the flat Modelica representation generated
by Dymola 2015 FD01, but similar reasoning applies to
the flat Modelica generated by the first prototypical sup-
port for state machines implemented in OpenModelica. A
deliberately simple example was used in order to keep the
discussion comprehensible.

To give the correct semantics of state machines encoded
in the considered flat Modelica representation, it is neces-
sary to deduce structural information regarding the state
machine composition, e.g.,
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Listing 4. Flat Modelica model generated from the (invalid)
model defined in Listing 3.

model InvalidSM

Integer i(start = 0);

Integer state1.i = i;

Integer state2.i = i;

// Equations and algorithms

// Component state1

// class InvalidSM.State1

// extends InvalidSM

equation

state1.i = previous(i)+2;

// end of extends

// Component state2

// class InvalidSM.State2

// extends InvalidSM

equation

state2.i = previous(i)-1;

// end of extends

// Component

// class InvalidSM

equation

transition(state1,state2,i > 10,

false,true,false ,1);

transition(state2,state1,i < 1,

false,true,false ,1);

initialState(state1);

end InvalidSM;

• associate assignment equations for state variables to
corresponding states,

• recover the hierarchical state machine structure,

• identify shared variables,

• identify in which equations shared variables are used
in an assignment context, and finally,

• deduce which assignment equations need to be
merged.

However, experience from the first prototypical imple-
mentation in OpenModelica suggest that it is hard to auto-
matically reconstruct this information. from the flattened
representation without propagating further structural in-
formation about the model from the front-end to the back-
end. This crucial additional information is not visible in
the flat Modelica representation. The following sections
will therefore discuss a symbolic representation for flat-
tened state machine constructs that makes such structural
information explicitly available within the flat Modelica
model.

3 Practical Symbolic Representation

Different approaches have been experimented with in or-
der to find an adequate symbolic representation. One im-
portant requirement is that the representation should be
flexible enough for future incorporation of continuous-
time equations. Hence, it should be general enough to al-
low for multi-mode DAE/ODE modeling resembling the
style that was advocated by Elmqvist et al. (2014) and
Bouissou et al. (2014). In a first approach it was in-
vestigated whether symbolic representations developed in
the context of hybrid automata modeling and verification
(Alur et al., 1993) could be adapted and reused in a Mod-
elica context.

The basic idea in this first approach was to generate flat
state machine representations and use interconnection re-

lations to describe parallel and hierarchical compositions.
This idea was motivated by a versatile notion of composi-
tion described by Tabuada (2009) in the context of hybrid
system modeling. However, the representations became
large (depending on the example about twofold the size
compared to the representation proposed below), appeared
rather artificial in the context of Modelica, and required
many decisions during the flattening process that seem to
be better postponed to the back-end.

Therefore, a more lightweight approach is proposed. It
is based on the following basic ideas:

• Preserve the state machine hierarchy by introducing
the notions of stateMachine and state.

stateMachine Consists of a set of mutually exclu-
sive states that are related by transitions (flat
state machine).

state Consists of variable declarations and equations
associated to that state. May have nested state
machines.

• Generate the equations necessary for merging shared
variables from mutual exclusive states.

The resulting representation has the property that the num-
ber of equations and variables must be equal for a valid
system.

Instead of the terms “stateMachine” and “state” one
might prefer to use “automaton” and “mode” which cap-
ture that a system operates in a certain mode and that the
automaton logic allows to change the active mode. How-
ever, the proposed terms correspond to the terms that are
used in the state machine chapter of the Modelica 3.3 spec-
ification.

3.1 Simple State Machine Example

With the proposed extension, the flat representation of the
simple state machine example from Listing 1 translates
to the flat Modelica displayed in Listing 5. Note that
two auxiliary variables $state1.i, $state2.i have been
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Listing 5. Extended flat Modelica model proposed to be gener-
ated for the simple state machine model defined in Listing 1.

class SimpleSM

Integer i(start=0);

stateMachine smOf.state1

state state1

Integer $state1.i;

equation

$state1.i = previous(i) + 2;

end state1;

state state2

Integer $state2.i;

equation

$state2.i = previous(i) - 1;

end state2;

end smOf.state1;

equation

i = if activeState(state1) then $state1.i

elseif activeState(state2) then $state2.i

else previous(i);

transition(state1,state2,i > 10,

false,true,false ,1);

transition(state2,state1,i < 1,

false,true,false ,1);

initialState(state1);

end SimpleSM;

introduced. They are substitutes for state1.i, state2.i
in the respective states and are used in the generated vari-
able merging equation. However, in case state1.i and
state2.i appear as argument in a previous(..) operator
the variable i is substituted instead.

The “$” prefix shall denote an auxiliary variable that is
related to the subsequent variable name, but not strictly
identical (e.g., i = state1.i = state2.i, but i 6=
$state1.i 6= $state2.i).

Compared to the flat Modelica representation of List-
ing 2, the semantics of the simple state machine example
is more explicitly represented in the flat Modelica of List-
ing 5 which re-enables the possibility to interpret the flat
Modelica representation in a meaningful manner. Note
that Listing 5 has the desirable property that the number of
equations equals the number of unknowns since the vari-
able merging equation (i.e., the equation for i) is made
explicitly visible.

3.2 Hierarchical State Machine Example

The hierarchical state machine example shown in Figure 3
is motivated by the example given by Maraninchi and Ré-
mond (2003). The state machine receives a stream of input
values i and j and computes the variables x, y, and z. For
this example the input values have been set to the constant
values i=true and j=false.

Listing 6 shows how information about the structural
composition for the hierarchical state machine from Fig-

inner Integer x(start=0);
inner Integer z(start=0);
inner Integer y(start=0);

a

outer output Integer x;
inner outer output Integer y;
inner outer output Integer z;
x = previous(x) + 1;

c

outer output Integer y;
y = previous(y) + 1;

d

outer output Integer y;
y = previous(y) - 1;

e
outer output Integer z;
outer input Integer y;
z = previous(z) + y;

f
outer output Integer z;
outer input Integer y;
z = previous(z) - y;

y == 10

y == 0

z > 100

z < 50

b

outer output Integer x;
x = previous(x) - 1;

(z > 100 and i) or j

x == 0

// assume constant state machine inputs:

input Boolean i=true;

input Boolean j=false;

Figure 3. Hierarchical and parallel composition example moti-
vated from Maraninchi and Rémond (2003).

ure 3 is preserved in the proposed flat Modelica represen-
tation. The complete listing for the flat Modelica repre-
sentation is given in Appendix A.

3.3 Summary of Rules

The rules for mapping from state machines specified in
Modelica to the proposed flat representation can be sum-
marized as follows:

• Any class instance x that appears as argument in
an initialState(..) or transition(..) operator re-
sults in a section state x ... end x; in the flat Mod-
elica representation.

• Any class instance x that appears as argument
in an initialState(..) operator results in a sec-
tion stateMachine smOf.x ... end smOf.x; in the
flat Modelica representation7.

• States that are connected by transition relations are
collected in a stateMachine section. The identifier
of the stateMachine section encodes the component
reference of the initial state of that state machine.
Hence, a stateMachine section collects states that be-
long to the same flat state machine.

• For any outer output or inner outer output vari-
able declaration x, an auxiliary variable $x is intro-
duced and all occurrences of x are replaced by $x un-
less x appears as argument in a previous(..) opera-
tor in which case x is replaced by its corresponding
most inner component reference8.

7The name following the “stateMachine” construct has no significant
semantics and could be also omitted, e.g., “stateMachine . . . end;”.

8Hence, it is replaced by the most inner component reference and
not by a references to an intermediate “inner outer output” declaration.
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Listing 6. Preservation of state machine composition informa-
tion for the hierarchical state machine from Figure 3.

class HierarchicalSM

stateMachine smOf.a

state a

stateMachine smOf.a.c

state a.c

...

end a.c;

state a.d

...

end a.d;

end smOf.a.c;

stateMachine smOf.a.e

state a.e

...

end a.e;

state a.f

...

end a.f;

end smOf.a.e;

...

end a;

state b

...

end b;

end smOf.a;

...

end HierarchicalSM;

• outer variables that are not declared as output are re-
placed by their corresponding inner component ref-
erences.

• Equations for merging shared variables are intro-
duced according to the following rules:

– For any inner (or inner outer) variable that is
referenced by an outer (or inner outer) vari-
able declaration in one or more states (within
the same hierarchy) of a stateMachine section,
a merging equation is formed at the instance
level in which the stateMachine is defined.

– The merging equation assigns the inner vari-
able the value of the corresponding auxiliary
variable of the currently active state in the fol-
lowing form:

x = if activeState(a) then $a.x

elseif activeState(b) then $b.x

else previous(x);

Further on, it is possible to improve the comprehen-
sibility of the state machine representation by collect-
ing all transitions and merging equations associated to a
stateMachine section within that associated section (note
that this is a pretty-print consideration and not a require-
ment for giving an unambiguous semantics).

4 Implementation

The proposed flattening for state machines has been im-
plemented in the OpenModelica compiler. The process is
depicted in Figure 4. State machines are first flattened in

Front-end

 parsing & 
 instantiation

Modelica state-
machine model

Flat model
equations AST

Back-end

Data-flow AST

Reuse existing
equation
transformation &
code generation

Simulation
executable

State machine

instantiation

State machine

elaboration

Figure 4. Outline of the state machine compilation process.

the compiler front-end according to the approach that was
outlined in Section 3. After that, the state machine struc-
tures are further elaborated in the back-end where they are
translated to basic data-flow equations (by transforming
the abstract syntax tree (AST)). The translation to data-
flow equations is inspired by the state machine compila-
tion approach described by Colaço et al. (2005) and is a
fairly direct encoding of the equations provided in the Se-

mantics Summary of (Modelica Association, 2012, Sec-
tion 17.3.4).

The current back-end implementation does not lead to
very efficient code, e.g., translation of the simple state ma-
chine example from Listing 1 to data-flow equations leads
to 24 (mostly Boolean) data-flow variables (and equations)
in the back-end (see Appendix B). However, this can be
optimized to produce fewer variables and equations in fu-
ture versions of the compiler without having to change the
underlying symbolic representation produced by the front-
end. The advantage of the current back-end implementa-
tion is the possibility to reuse most of the existing equation
transformation and code generation facilities without fur-
ther modification.

The current prototype needs a workaround to compen-
sate for the not yet implemented support for Modelica’s
clocked synchronous language extension (Modelica As-
sociation, 2012, Chapter 16). The “hack” in the back-end
is to wrap all state machine related equations in a when-
equation with a sampling period of one second and replace
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all previous(..) operators by pre(..) operators, similarly
to following code snippet:

when sample(0.0, 1.0) then

i = if smOf.state1.activeState == 2

then -1 + pre(i)

else 2 + pre(i);

end when;

This restriction can be lifted easily as soon as the clocked
synchronous language elements are fully supported by our
compiler. Meanwhile the workaround allows to experi-
ment with state machine implementations in parallel and
independently to ongoing work related to synchronous
languages elements support.

5 Conclusion

This paper proposed a dedicated symbolic representation
for flattened Modelica state machines. The representation
explicitly preserves crucial structural and relational infor-
mation in the human readable flat Modelica representa-
tion. Hence, the proposed representation avoids ambigu-
ities and can be interpreted straightforwardly by human
inspection. This is in contrast to the ambiguous and hard
to interpret flat representations of state machine models
which are generated by existing tools. Furthermore, this
representation is well suited for further computational pro-
cessing in the back-end, because it becomes unnecessary
to elaborately re-construct important structural informa-
tion solely from the basic data-flow equations that are typ-
ically available at that later compiler phase.

At the same time the proposed representation strives to
avoid an early commitment to implementation details for
the specified state machine logic, i.e, it refrains from per-
forming a full translation of the state machine constructs to
basic clocked synchronous data-flow equations in the flat-
tened representation. In that way it allows one to postpone
implementation decisions, that would potentially hinder
code optimization techniques, to later translation stages.

The approach has been implemented in the OpenMod-
elica compiler and successfully tested on a number of state
machine models.
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A Flat Modelica for the Hierarchical

State Machine Example

The complete listing of the flat Modelica representation of
the hierarchical state machine example from Section 3.2.

class HierarchicalSM

Integer x(start = 0);

Integer z(start = 0);

Integer y(start = 0);

input Boolean i = true;

input Boolean j = false;

stateMachine smOf.a

state a

Integer $a.y;

Integer $a.z;

Integer $a.x;

stateMachine smOf.a.c

state a.c

Integer $a.c.y;

equation

$a.c.y = 1 + previous(y);

end a.c;

state a.d

Integer $a.d.y;

equation

$a.d.y = -1 + previous(y);

end d;

end smOf.a.c;

stateMachine smOf.a.e

state a.e

Integer $a.e.z;

equation

$a.e.z = previous(z) + y;

end a.e;

state a.f

Integer $a.f.z;

equation

$a.f.z = previous(z) - y;

end a.f;

end smOf.a.e;

equation

$a.z = if activeState(a.e) then $a.e.z

elseif activeState(a.f) then $a.f.z

else previous(z);

$a.y = if activeState(a.c) then $a.c.y

elseif activeState(a.d) then $a.d.y

else previous(y);

initialState(a.e);

transition(a.e, a.f, $a.z > 100,

false, true, false, 1);

transition(a.f, a.e, $a.z < 50,

false, true, false, 1);

transition(a.c, a.d, $a.y == 10,

false, true, false, 1);

transition(a.d, a.c, $a.y == 0,

false, true, false, 1);

$a.x = 1 + previous(x);

initialState(a.c);

end a;

state b

Integer $b.x;

equation

$b.x = -1 + previous(x);

end b;

end smOf.a;

equation

z = if activeState(a) then $a.z

else previous(z);

x = if activeState(a) then $a.x

elseif activeState(b) then $b.x

else previous(x);

transition(a, b, z > 100,

false, true, false, 1);

transition(b, a, x == 0,

false, true, false, 1);

initialState(a);

end HierarchicalSM;

B Back-End Equations

The state machine elaboration in the back-end translates
the state machine representation from the front-end to ba-
sic data-flow equations (see Figure 4). The intermediate
system of equations can be retrieved from the back-end
by using debugging functions. The listing below shows
the equation system which is generated for the simple state
machine example from Listing 1. For better readability the
debug output has been reformatted to resemble the typi-
cal flat Modelica style. Obviously, the behaviour of the
simple state machine can already be described by a frac-
tion of the actually generated equations. However, such
optimizations are not performed in the current prototype
implementation.
model SimpleSM

// parameters

Integer smOf.state1.tPriority[2] = 1

Boolean smOf.state1.tSynchronize[2] = false

Boolean smOf.state1.tReset[2] = true

Boolean smOf.state1.tImmediate[2] = false

Integer smOf.state1.tTo[2] = 1

Integer smOf.state1.tFrom[2] = 2

Integer smOf.state1.tPriority[1] = 1

Boolean smOf.state1.tSynchronize[1] = false

Boolean smOf.state1.tReset[1] = true

Boolean smOf.state1.tImmediate[1] = false

Integer smOf.state1.tTo[1] = 2

Integer smOf.state1.tFrom[1] = 1

Integer smOf.state1.nState = 2

// variables

Integer i(start=0);

Boolean state2._active;

Boolean state1._active;

Boolean smOf._state1._init(start=true);

Boolean smOf._state1._stateMachineInFinalState;

Boolean smOf._state1._finalStates[2];

Boolean smOf._state1._finalStates[1];

Boolean smOf._state1._nextResetStates[2];

Boolean smOf._state1._nextResetStates[1];

Boolean smOf._state1._activeResetStates[2];

Boolean smOf._state1._activeResetStates[1];

Boolean smOf._state1._nextReset;

Integer smOf._state1._nextState;

Boolean smOf._state1._activeReset;

Integer smOf._state1._activeState;

Integer smOf._state1._fired;

Boolean smOf._state1._selectedReset;

Integer smOf._state1._selectedState;

Boolean smOf._state1._reset;

Boolean smOf._state1._active;

Boolean smOf._state1._cImmediate[2];

Boolean smOf._state1._c[2];

Boolean smOf._state1._cImmediate[1];
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Boolean smOf._state1._c[1];

equation

when {sample(1.0, 1.0), initial()} then

state2.active = smOf.state1.active

and smOf.state1.activeState == 2;

state1.active = smOf.state1.active

and smOf.state1.activeState == 1;

smOf.state1.active = true;

smOf.state1.reset = pre(smOf.state1.init);

smOf.state1.init = false;

smOf.state1.stateMachineInFinalState =

smOf.state1.finalStates[

smOf.state1.activeState];

smOf.state1.finalStates[2] = max(

if smOf.state1.tFrom[2] == 2 then 1 else 0,

if smOf.state1.tFrom[1] == 2 then 1 else 0

) == 0;

smOf.state1.finalStates[1] = max(

if smOf.state1.tFrom[2] == 1 then 1 else 0,

if smOf.state1.tFrom[1] == 1 then 1 else 0

) == 0;

smOf.state1.nextResetStates[2] =

if smOf.state1.active then

if smOf.state1.selectedState == 2 then false

else smOf.state1.activeResetStates[2]

else pre(smOf.state1.nextResetStates[2]);

smOf.state1.nextResetStates[1] =

if smOf.state1.active then

if smOf.state1.selectedState == 1 then false

else smOf.state1.activeResetStates[1]

else pre(smOf.state1.nextResetStates[1]);

smOf.state1.activeResetStates[2] =

if smOf.state1.reset then true

else pre(smOf.state1.nextResetStates[2]);

smOf.state1.activeResetStates[1] =

if smOf.state1.reset then true

else pre(smOf.state1.nextResetStates[1]);

smOf.state1.nextReset = if smOf.state1.active

then false

else pre(smOf.state1.nextReset);

smOf.state1.nextState =

if smOf.state1.active

then smOf.state1.activeState

else pre(smOf.state1.nextState);

smOf.state1.activeReset =

if smOf.state1.reset then true

else

if smOf.state1.fired > 0 then

smOf.state1.tReset[smOf.state1.fired]

else smOf.state1.selectedReset;

smOf.state1.activeState =

if smOf.state1.reset then 1

else

if smOf.state1.fired > 0 then

smOf.state1.tTo[smOf.state1.fired]

else smOf.state1.selectedState;

smOf.state1.fired = max(

if

if smOf.state1.tFrom[2] ==

smOf.state1.selectedState then

smOf.state1.c[2]

else false

then 2 else 0,

if

if smOf.state1.tFrom[1] ==

smOf.state1.selectedState then

smOf.state1.c[1]

else false

then 1 else 0);

smOf.state1.selectedReset =

if smOf.state1.reset then true

else pre(smOf.state1.nextReset);

smOf.state1.selectedState =

if smOf.state1.reset then 1

else pre(smOf.state1.nextState);

smOf.state1.c[2] =

pre(smOf.state1.cImmediate[2]);

smOf.state1.cImmediate[2] = i < 1;

smOf.state1.c[1] =

pre(smOf.state1.cImmediate[1]);

smOf.state1.cImmediate[1] = i > 10;

i = if smOf.state1.activeState == 2

and smOf.state1.active then -1 + pre(i)

else if smOf.state1.activeState == 1

and smOf.state1.active then 2 + pre(i)

else pre(i);

end when;

end SimpleSM;
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