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Abstract 

The short term production planning optimization 
problem for a district heating system is solved in two 
steps by integrating physics-based models into the 
standard approach. In the first step the unit 
commitment problem (UCP) is solved using mixed 
integer linear models and standard mixed-integer 
solvers. In the second step the economic dispatch 
problem is solved, utilizing the unit statuses from the 
UCP. This step involves dynamic optimization of non-
linear physics-based models. Both optimizations aim at 
maximizing the production profit. 

The modeling has focused on distributed 
consumption and production. Optimization results 
show that modeling of the district heating net impacts 
the production planning in several ways, with results 
such as reduction of production peaks and delay of 
costly unit start-ups. 

The physics-based modeling and dynamic 
optimization techniques provide a flexible way to 
formulate the optimization problem and include 
constraints of physically important variables such as 
supply temperature, pressures and mass flows. 

Keywords:     district heating, physical modeling, 

distribution, optimization 

1 Introduction 

1.1 Background 

The goal of production planning is to determine the 
most profitable scheduling of the different production 
units in a network, without violating operational 
constraints. It can be viewed as an optimization 
problem, which contains both continuous and discrete 
variables. 

The operational statuses (on or off) of the different 
production units form the discrete decision variables of 
the optimization problem. The continuous decision 
variables are production unit loads and pump speeds.  

The formulation also includes non-linear parts, such 
as turbine characteristics and steam properties. This 

results in an optimization problem referred to as a 
mixed integer non-linear problem (MINLP).  
Currently, there are no known algorithms with 
predictable and robust performance for solving this 
kind of problem.  

The predicted customer heat load during the 
optimization interval is the main input to the 
production planning problem. The prediction is often 
generated from weather forecasts and cannot be known 
exactly in advance. In this paper manually generated 
predictions are used, mostly assuming perfect 
predictions, but formulations where uncertainties are 
included are also investigated. The implemented 
optimization model is based on the units and network 
distribution of the Uppsala district heating network, 
with special emphasis on the modeling of the 
cogeneration plant KVV. 

The standard method to circumvent the difficulties 
of solving a MINLP problem in a production planning 
formulation is to simplify the modeling considerably. 
By linearizing plant models and reducing the network 
model to only contain energy flows, a linear 
optimization formulation is obtained instead. This kind 
of problem is called a Mixed Integer Linear Problem 
(MILP) and can be solved using standard techniques. 
Previous work based on linear plant models include 
(Arroyo and Conejo, 2004), where a method to 
formulate start and stop trajectories is presented and 
(Rolfsman, 2004), where a heat storage strategy based 
on the variations in electricity price is presented. In 
(Rong, et al, 2008) an improved algorithm for the unit 
commitment problem is presented. 

1.2 Proposed Approach 

The separation of the optimization problem into the 
Unit Commitment Problem (UCP) and the Economic 
Dispatch Problem (EDP) part presents an alternative 
solution to the problem of creating a robust 
optimization formulation of the production planning 
problem. The two optimization problems are solved in 
series, a method previously implemented in (Velut et 
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al, 2013). The modeling and optimization efforts are 
conducted in the following manner: 
 UCP: A linear optimization formulation is obtained 

by approximating the district heating network 
using piecewise linear models. The problem is 
solved using a MILP solver with the status signal 
for each production unit being the main result. 

 EDP: A representation of the district heating 
network is created using physical modeling. 
Smoothened versions of the status signals from the 
UCP are implemented in the model, so that only 
continuous variables are present in the 
optimization formulation. By solving the 
optimization problem, the load for each unit is 
decided. 

There are several benefits with including physical 
modeling in the optimization formulation. The 
optimization model becomes highly accurate when 
physical laws such as mass and energy balances are 
used to describe the units of the network. It also makes 
it possible to optimize physically relevant variables 
that effect the plant economics such as supply 
temperatures and mass flows. The possibility to impose 
constraints on these variables, based on the physical 
and operational limitations of the real system is another 
advantage. 

In order to solve the EDP, the optimization problem 
is discretized into a Non-Linear Programming (NLP) 
problem using the so-called collocation method 
(Magnusson, 2012). Different solvers for NLP 
problems exist, in this work the open-source solver 
IPOPT (Interior Point Optimizer), see (Wächter and 
Biegler, 2006), was used. In previous projects the 
authors have used this method for dynamic 
optimization of a carbon capture plant (Åkesson et al, 

2011) and, more notably, for short-term production 
planning of district heating (Velut et al, 2013). 

2 Modeling 

2.1 Uppsala District Heating Network 

The production units and network distribution of the 
Uppsala district heating network were used as models 
when the production planning setup was created in this 
work. The main production unit in this network is the 
cogeneration plant KVV located at the production site 
Boländerna. The KVV has a production capacity of 
approximately 250 MW heat and 130 MW electricity. 
Other important units in the system include several oil 
boilers, a waste incineration plant, and an accumulator. 

2.2 Discrete Optimization Model 

The models used in the UCP are formulated in Python 
using the Pyomo modeling language. The models are 
linear and coarse and are mainly describing energy and 
energy flows. 

2.2.1 Cogeneration Plant KVV 

The KVV is modeled using a polytope in the space of 
electricity, heat and return temperature, which is 
displayed in Figure 1. This means that for each return 
temperature the polytope provides an area in the 
electricity-heat plane which the electricity and heat 
production is confined to. The KVV model in the EDP, 
which is summarized in section 2.3.1, was used to 
generate the polytope. The fuel consumption ���� for 
a certain electricity production ௘ܲ� and heat production ܳ��� is calculated using the efficiency ���� according 
to ���� = ܳ��� + ௘ܲ�����  (1) 

               

Figure 1. Polyhedron representing the operating regions 
of the cogeneration plant. 

2.2.2 Other Production Units 

For units that only produce heat, the relation between 
produced heat ܳ௨௡�௧ and fuel consumption �௨௡�௧ is 
given by �௨௡�௧ = ܳ௨௡�௧�௨௡�௧  (2) 

2.2.3 Accumulator 

The accumulator works as an integrator, where the 
stored energy ܧ��� is determined by ܧ���[�] = �]���ܧ − 1] − ℎܳ���[� − 1] (3) 

where ܳ���[� − 1] is the energy flow to or from the 
accumulator and ℎ is the sampling period. 

2.2.4 Pipe Model 

In order to represent the influence of the transportation 
of the district heating water, a pipe model containing a 
fixed time delay and a heat loss model is used. The 
heat loss from a pipe section, ܳ̇, is determined using 
the outdoor temperature and is based on the following 
formula, describing the heat transferred from an 
underground cylinder with temperature �0, when the 
ground temperature is �� (Sundén, 2006). 
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ܳ̇ = 2���ሺ�0 − ��ሻ�� ቆ2�� + √4ቀ��ቁ2 − 1ቇ 
(4) 

The other parameters of this equation is summarized in 
Table 1. 

Table 1. Heat transfer parameters. 

Parameter Interpretation � Pipe length � Pipe diameter � Pipe depth � Soil heat transfer coefficient 
  

2.3 Continuous Optimization Models 

The EDP modeling was performed in Dymola, where 
Modelica models representing the different units and 
components of the district heating network, were 
created. 

Two different water media models are implemented, 
an advanced model using polynomials to approximate 
IF97 reference functions, and a simple model where 
the specific heat capacity and density of the water are 
constant. The advanced medium model is used in the 
vapor cycle of the KVV, while the simple medium 
model is used to represent the district heating water. 

2.3.1 Cogeneration Plant KVV 

The goal of the modeling of the KVV is to capture how 
the produced heat and electricity depends on the plant 
load, return water temperature and mass flow. For this 
reason the modeling efforts have been directed towards 
the vapor cycle. The entire cycle is however not 
included in the model, instead boundary conditions 

have been implemented using the following 
assumptions: 
 The boiler outlet vapor characteristics (pressure 

and enthalpy) are constant and the mass flow is 
proportional to the plant load. 

 The condensate leaving the condensers is at 
saturation pressure. 

 Bleed streams from low pressure turbines are 
represented by a lumped pressure drop and a fixed 
pressure boundary. 

A schematic illustration of the model of the KVV is 
displayed in Figure 2. A summary of the main 
components used in this model is presented below. 
 Turbine: An isentropic efficiency parameter is used 

to calculate the outlet enthalpy and the mechanical 
work, while Stodola’s law determines the relation 
between mass flow and pressure drop. The 
electrical output is calculated using mechanical and 
electrical efficiencies. 

 Condenser: By considering the difference between 
incoming water temperature and the saturation 
temperature a heat flow rate to the district heating 
water is calculated. This heat flow rate determines 
the condensation rate and consequently the 
bleeding flow from the turbine stages. 

 Control volume: Dynamic mass and energy 
balances are used to model a control volume. The 
equations are formulated using pressure and 
enthalpy as states, which requires partial 
derivatives of density with respect to enthalpy and 
pressure. 

 Pressure loss: A quadratic loss function is used to 
relate the mass flow to the pressure drop. 

 Reheater: An ideal representation of the reheating 

Figure 2. Schematic overview of the cogeneration plant model. 
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in the plant, as the outlet temperature is constant 
and determined by a parameter value. 

2.3.2 District Heating Network Models 

The models used to represent all units in the district 
heating network, except for the KVV, are summarized 
below. 
 Heat production unit: The heat production from 

other units than the KVV is modeled empirically, 
adding heat to the district heating water 
proportionally to the firing power.  

 Customer model: The mass flow through each 
customer is determined by the customer load 
model. The difference between the supply 
temperature and the predefined return temperature, 
which is based on the outdoor temperature, 
provides the mass flow based on the heat demand. 

 Accumulator: A finite volume approximation is 
used where buoyance effects are neglected, i.e. no 
mixing is assumed when the accumulator is not 
charging or discharging. Heat losses are also 
neglected. 

2.3.3 Pipe model 

The production units and the customers are connected 
using pipe models. These are modeled using a 
combination of a standard finite volume 
implementation and a fixed delay of the temperature 
profile. The two components are connected in series, 
together with a heat loss component using the same 
heat dissipation equation as in the UCP pipe. 

The goal of combining a fixed delay with a finite 
volume model is to capture the main characteristics of 
the pipe without having to use a model with very many 
pipe segments, something that would increase the 
complexity of the optimization problem considerably. 
It is a compromise between using only a fixed delay, 
which would result in incorrect delay times when the 
mass flow is varying, and using a fixed volume 
implementation with few volume segments, which 
would result in numerical dissipation. The ratio 
between the fixed delay and the finite volume pipe 
volume is decided based on the range of mass flows 
that will occur in each pipe and the accepted delay time 
error for the boundaries of this range. 

2.4 Network Representation 

The distribution of the customers and production units 
in the Uppsala district heating network is modeled 
using a one-dimensional approach. The network 
description is based on the setup presented in (Saarinen 
and Boman, 2012), where the customer distribution as 
a function of the delay time is determined. Compared 
to that model the setup in the optimization models is 
simplified further and only includes three customers. In 
Figure 3 a schematic representation of the implemented 
network structure is displayed. 

               

Figure 3. Schematic representation of network structure 
used in the discrete (upper structure) and the continuous 
optimization (lower structure). 

3 Optimization Tools 

3.1 Discrete Optimization 

The UCP problem was formulated in Python using the 
Pyomo modeling language. Two different solvers were 
used for solving the UCP, the commercial solver 
Gurobi (Gurobi Optimization, 2015) and the open 
source package GLPK (Makhorin 2012). 

3.2 Continuous Optimization 

The optimization problem for the EDP was formulated 
using the Optimica language, extending the Modelica 
models describing the system. The open-source 
JModelica.org platform (Modelon AB, 2014) was used 
to translate the formulation into an NLP and this 
problem was solved using the Interior Point Optimizer 
(IPOPT), see (Wächter and Biegler, 2006). FMUs were 
used for initial trajectory simulations. 

4 Optimization Formulation 

4.1 Cost Function 

In both the EDP and the UCP the goal is to maximize 
the economical profit. Incomes from selling heat and 
electricity, fuel costs and maintenance costs are 
therefore the main parts of the cost functions in the two 
optimization formulations. Only constant heat, 
electricity and fuel prices are considered and additional 
costs, such as pump costs are not considered in the 
model. In the UCP costs for starting and shutting down 
production units are also included in the cost function. 

Additional terms must be added to the cost functions 
for numerical reasons. In the UCP one can easily 
obtain multiple solutions. To avoid this problem a 
small cost penalizing production unit load changes 
have been added. In the EDP a minor cost on input 
derivatives must be implemented for regularity 
reasons. 

4.2 Degrees of Freedom 

In the UCP the heat production and the status of each 
unit are decision variables, as well as the KVV 
electricity production and the energy flow to or from 
the accumulator. 
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The decision variables for the EDP are similar to 
those in the UCP, but with a few key differences. 
Firstly, the status of each unit is fixed in the EDP. 
Secondly, it is not the heat production of each unit that 
is the decision variable, but the load change. This is 
achieved by introducing equations of the form �௨௡�௧ሺ�ሻ = ∫ �̇௨௡�௧ሺ�ሻ��௧  (5) 

The same formulation is used for the accumulator, but 
here another difference is also preset, as it is not the 
energy flow, but rather the district heating water mass 
flow that is controlled. 

4.3 Constraints 

Constraints represent an important part of the 
optimization formulation. In this section the most 
important constraints in the UCP and EDP 
formulations are presented. 

All production units in the UCP and the EDP have 
constraints on their productions and their production 
change rates, corresponding to the limitations of the 
real plants. For the accumulator there are similar 
constraints defining the minimal and maximal amount 
of energy that can be stored, and how fast the energy 
level can change. To prevent emptying of the 
accumulator at the end of the optimization interval, an 
additional constraint of the form ܧ���[��] ≥  (6) [0�]���ܧ

is used in the UCP. Here �0 and �� represents the 
endpoints of the optimization interval. In the EDP an 
accumulator constraint based on the UCP accumulator 
energy at the end of each optimization interval is used. 

When a production unit changes status the heat 
production must follow specific start and stop 
trajectories, denoted ܳ௨௡�௧,�௧��௧[�] and ܳ௨௡�௧,�௧�௣[�], 
respectively. In the UCP this is implemented using 
constraints of the form ⁡⁡⁡⁡⁡ܳ௨௡�௧[�] = ܳ௨௡�௧,�௧��௧[�],⁡⁡⁡⁡�∈ [��௧��௧ , ��௧��௧+ ��௧��௧ௗ௘���] (7) 

 
 ܳ௨௡�௧[�] = ܳ௨௡�௧,�௧�௣[�],⁡⁡⁡⁡�∈ [��௧�௣, ��௧�௣ + ��௧�௣ௗ௘���] (8) 

 
where ��௧��௧ௗ௘��� and ��௧�௣ௗ௘��� are the durations of 
the constraints. 

In the EDP the trajectories must not be followed 
exactly. Instead upper and lower constraints are used to 
confine the production to be close to the trajectory are 
used. 

In the EDP more constraints are present, limiting 
e.g. mass flows, temperatures and pressures in different 

components. For a more detailed description, see 
(Larsson et al, 2014). 

5 Optimization Example 

Several test cases of varying complexity were 
developed to evaluate the production planning strategy. 
In this paper the main results from the most realistic 
case are presented. 

5.1 Optimization Settings 

A sampling interval of 30 minutes for UCP 
optimization and 20 minutes for EDP optimization is 
used in all optimization cases. The optimization 
interval is between one and four days in the UCP and 
between 20 and 24 hours in the EDP. The difference in 
optimization horizon is a result of the different 
objectives of the optimization problems; the UCP 
results determine long term plans while the EDP 
handles faster dynamics. 

The customer load profile consist of a base load 
with two load peaks per day, representing the typical 
heat demand of a residential area. 

5.2 Test Case 

In this test case, the heat load profile is increasing 
linearly, with load peaks superimposed. The load 
profile during the first day of the scenario is displayed 
in Figure 4. The problem setup involves three 
production units, the accumulator, and customers. One 
of the production units, the waste incineration plant 
AFA is running with maximal load throughout the 
optimization. The KVV is also running at all times, but 
the load is a decision variable. The final producer is the 
Husbyborg oil boiler. This unit is initially turned off, 
but must eventually be started as the customer heat 
demand is increasing. 

 

Figure 4. Customer load profile during day one. 

Two subcases are considered, in the first one a 
point-wise network representation with one customer is 
implemented and in the second one a distributed 
network is used. The optimization interval is four days 
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for the UCP. For the EDP, this period is divided into 
five separate optimizations for the first subcase, and six 
optimizations in the second subcase. 

5.2.1 Optimization Results 

The results from the test case are displayed in Figure 5 
to Figure 8. The most important result is the difference 
in start-up time for the oil boiler, depending on which 
network topology that is considered. By including the 
distribution of the customers in the optimization 
formulation it is possible to delay the start-up with nine 
hours, from hour 30.5 to hour 39.5. The difference is 
explained by the reduced production peaks caused by 
the difference in time delay between the different 
customers. 

 

Figure 5. Customer load and heat production for different 
units using a point-wise network. Results from the 
discrete (UCP) and the continuous (EDP) optimizations 
are compared. 

 

Figure 6. Customer load and heat production using a 
distributed network. Results from the discrete (UCP) and 
the continuous (EDP) optimizations are compared. 

 

Figure 7. Accumulator usage in the point-wise network 
case. Results from the discrete (UCP) and the continuous 
(EDP) optimizations are compared. 

 

Figure 8. Accumulator usage in the distributed network 
case. Results from the discrete (UCP) and the continuous 
(EDP) optimizations are compared. 

 
One can also see that there are some differences in 

the behavior of the EDP results compared to the UCP. 
Especially the signal describing the heat production of 
the oil boiler contains oscillations in the EDP results, 
which are not present in the UCP results. The 
oscillations are a result of the more detailed 
optimization model used in the EDP, which includes 
faster dynamics, and the shorter optimization horizon 
used for the EDP. The more detailed modeling makes 
it possible to utilize effects such as heat storage in the 
pipes and mass flow dependent delay times. This 
results in an optimal strategy that contains faster load 
variations. 

The shorter optimization horizon introduces some 
transient behavior at the end of each optimization 
interval for the EDP, as the optimization attempts to 
use the free heat stored in the network. To counteract 
this, the final part of each optimization was 
disregarded, but nonetheless some transient behavior 
based on this effect can be observed. By implementing 
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the EDP as an MPC, disregarding more of the 
optimization results, this unwanted effect would be 
removed. However, the EDP results are in general of 
higher quality than the UCP results due to the more 
detailed modeling. This means that they are more 
physically relevant, and also more optimal for the 
actual structure of the district heating network. 

Another notable feature of the optimization results is 
that the accumulator is used to compensate for the load 
variations, while the production plants are mostly 
running at constant load. 

The continuous formulation of the problem above 
contains 307 variables and 33 states, while the 
transcribed NLP formulation contains approximately 
70 000 variables. Using a standard laptop with 8 GB 
RAM and four 2.6 GHz CPUs, the optimization 
problem was solved in less than ten minutes.   

5.3 Conclusions from Other Test Cases 

 The district heating water mass flow is typically 
maximized and the supply temperature is 
correspondingly minimized. This results in a 
maximization of the KVV electricity production. 

 Pump limitations, customer supply temperature 
and condenser pressure can all be limiting the 
district heating highlighting the benefits of 
thorough physical modeling of the system. 

 By introducing a pipe model to represent the 
customer distribution the mass flow dependency of 
the delay time can be captured. 

 The importance of the delay time between 
customer and producer is highly depending on 
whether temperature or mass flow changes are 
used to compensate for heat load variations. When 
only the mass flow changes the delay time is 
irrelevant as water is incompressible. 

 The possibility to use the network as an 
accumulator follows from physical modeling of the 
distribution network. 

6 Conclusions 

In this paper an extension of the approach for short-
term production planning presented in (Velut et al, 
2013) has been proposed. The economic dispatch 
problem is solved with JModelica.org, using non-linear 
optimization of physical models. The method have 
been investigated using data from the district heating 
network in Uppsala, Sweden. 

The derived optimization strategy involves 
minimization of the district heating water supply 
temperature and, correspondingly, maximization of the 
mass flow. By considering constraints on variables 
such as pump speed, condenser pressure and customer 
temperature the limitations of the real system have 
been included in the formulation and the effect of these 
constraints can be seen in the optimization results. 

The network distribution is included in the 
optimization model using physical pipe models and a 
simplified topology. By using this network model the 
different time delays for different customer groups is 
included in the model. In computation experiments, the 
distributed customer increased the economic profit by 
lowering production peaks and utilizing heat 
accumulation in the network. 
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