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Abstract

This paper discusses FMI usage in an in-house
simulation tool landscape where it helps to open doors
between different tools. However, limitations due to
missing physical connectors or missing model structure
are faced and are described with the help of use cases.

Information hiding in FMI can turn out obstructive in
in-house applications. Experiences from implementing
FMI support in in-house simulation tools are shared.

Keywords: FMI in in-house simulators, FMI2.0,
physical connectors, structured parameters, co-
simulation, model exchange, NMPC, control test

1 Introduction

The industrial application of Functional Mock-Up
Interface (FMI) has already been discussed several
times, e.g. (Bertsch et al., 2014). The goal of this paper
is to add another aspect to this discussion. Our focus
lies on the in-house applicability of FMI in coupling
different tools and propriety models.

For several years, we are developing side-by-side
two different simulation tools for power plant systems.
An in-house Modelica library, called SiemensPower,
and a C++ based in-house tool for a similar purpose
named Dynaplant. The reason for developing both
simulation tools lies in their different strengths and
weaknesses. Dynaplant scores with its high
performance and numerical robustness that allows us
the investigation of fluid systems with a hundred
thousand dynamic states or more. It is fully integrated
into the in-house tool chain and allows an automatic
model setup from the design software KRAWAL?® for
steady-state heat balances. The GUI is optimized for
the purpose of modeling large fluid systems and the
plant model looks very similar to the familiar
KRAWAL® model. The drawback of Dynaplant is the
relatively high effort when developing new component
models.

The main driver for starting a Modelica library was
the modeling flexibility and transparency to the user.
Naturally, a Modelica library requires less effort in,
developing and maintaining of models. However, the
performance and numerical robustness is worse.

Once the need for two simulation environments is
accepted, it stands to reason to combine them in order
to leverage the benefits of both solutions. The first step

is to integrate Modelica models into Dynaplant to
overcome its limits with respect to modeling flexibility
(Sun et al., 2011). This development was started some
years ago based on Dymola’s code export feature.
Then, FMI for Model Exchange was adopted as soon it
became available. The use cases in chapter 2.1 explain
this application in more detail.

Chapter 2.2 addresses the second class of use cases,
which also deal with tool interoperability. However, in
these cases co-simulation Functional Mock-up Units
(FMU) are exported from Dynaplant models and serve
as a representation of the real plant in the loop with a
Nonlinear Model Predictive Controller (NMPC).

Chapter 3 focuses on the development of FMI
support in Dynaplant and points out some issues
experienced during implementation.

2 Use Cases

Two kinds of use cases are described in this chapter,
one targeting the utilization of FMI for model
exchange, the other addressing FMI for co-simulation,
see Figure 1. Apart from different application areas
major similarities exist:

e The use cases focus on tool interoperability

e All FMUs reside in-house only

e The models are huge with respect to number
of  parameters, dynamic states and
internal/local variables
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Figure 1: Overview of Use Cases

Our requirements of model exchange and tool
exchange certainly differ in some aspects from those in
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the use cases defined by the Modelisar project which
are described in (Blochwitz et al., 2011). For our use
cases there is no necessity for information hiding or IP
protection. On the contrary, the goal is to keep as much
information available for the user as possible.

2.1 Dynaplant Simulation

Our in-house simulator Dynaplant has been developed
for more than ten years in a cooperation of Siemens
Power and Gas and Siemens Corporate Technology. In
the past, the analysis focused on the detailed, dynamic
behavior of the water-steam cycle in a combined-cycle
power plant.

A special emphasis has been drawn on the
investigation of hydro-thermal dynamic-stability of
once-through evaporators between gas and water side
(Franke, 2008). Lately, the scope was extended to
investigations on the plant level. In general, this leads
to a higher need for flexibility in modeling because
different subsystems come into focus depending on the
application. FMI is an enabling technique to provide
that flexibility, e.g. to add the gas side and also
advanced controls, whilst keeping the efforts low. The
simulation support of tight project schedules was only
possible through the usage of FMUs.

In Dynaplant, components are modeled in one-
dimensional resolution in an acausal way. The GUI is
written in C# using a Microsoft Visio Add-in whereas
the plant model itself is stored in a Modelica similar
format. For simulation the plant is translated to C++.

2.1.1 Physical Component Models

The most natural use case for FMI in in-house
simulators is to import models from different sources
via model exchange. By this means, we integrate
Modelica models of subsystems in Dynaplant to extent
its application scope. The obvious driver behind this is
the wish to benefit from both, the high performance of
the C++ based in-house simulator and the modeling
flexibility of Modelica.

Figure 2 shows the Modelica model of a multistage
pump system controlled by a variable gear modelled in
Dymola. The model has been prepared for FMI export
which required an expansion of the physical fluid ports
to a signal interface, already resolving the causality.
Even for the very simple interface of such a pump
system the transformation to a pure signal interface
adds some overhead. Additionally, it becomes harder
to understand the model when importing it as an FMU,
see Figure 3. In Figure 4 the same system is modelled
based on built-in components. The limitation of FMUs
to signal interfaces very much hinder a convenient use
as an imported component. These issues will boost the
demand to provide all needed models as built-in
components and not as FMUs. All the more, since the

pump example is a rather simple system with a very
small interface regarding the number of physical
connectors. Looking at more involved power plant
components like a drum model with multiple fluid
connections across the boundary the graphical
representation of the FMU holds almost no benefits
because it becomes impossible to grasp the purpose of
the model at first glance.
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Figure 3: Integration of pump system FMU in Dynaplant
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Figure 4: Dynaplant built-in model of a pump system

Besides the loss of information caused by the
unstructured signal interface modeling, the lost
structure of parameters in an FMU is the most severe
shortcoming for us. Particularly, FMUs based on
Modelica models make use of parameter hierarchies on
many levels. Additionally, almost all professional
Modelica libraries use features like grouping and tabs
to generate a convenient user interface. Once exported
to an FMU all this information is lost and the user is
confronted with an unsorted list of parameters.
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2.1.2 Controller in Dynaplant (based on generated
Modelica code)

For testing plant control systems, Modelica models
are automatically generated based on proprietary
controller descriptions (Link et. al., 2014). In order to
use these controller models in Dynaplant, Modelica
models can be exported as FMU and imported into
Dynaplant. Tests showed that large controller models
are difficult to handle as FMUs for two reasons.

First, they use a bus connector (expandable
connector) for signal exchange in Modelica. This bus
connector contains hundreds of variables. Figure 5
sketches the concept for signal exchange. A global
name space is replicated by using an expandable
connector as an inner/outer component. Therefore,
actuators and measurements can be placed in the plant
on any level in the hierarchy. Furthermore, all
boundary conditions are set on the bus connector. This
graphical representation of the tested system as well as
the underlying control layout is lost when using FML
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Figure S: Signal Exchange in Modelica

All exchanged signals need to be available upon FMU
import in Dynaplant in order to investigate control
behavior. Currently, only scalar connectors are
supported by FMI, which makes it hard to handle large
sets of bus connector signals after importing the FMU.
Future versions of the FMI specification might
eliminate this problem.

Second, the controller models include many
instances with a huge number of parameters, which are
exported into the FMU. The  resulting
modelDescription.xml measures more than 150 MB.
Compared to the Modelica implementation measuring
about 6.7 MB (total model with all classes), this leads
to slower model import and instantiation. As the
compressed FMU appears to be small for the end user,
potential causes for performance issues are not
transparent. So far, we do not have a solution for
providing a compact FMU interface with all required
information. Limiting the number of visible parameters
on the Modelica side cannot be intended, as they might
be useful for investigating control behavior.

2.2 Offline Test of NMPC Loop

This section shows the usage of FMI for offline test of
a Nonlinear Model Predictive Control (NMPC) loop.
The basic concept of NMPC is to use a dynamic model
to forecast system behavior and optimize the forecast
in producing the best decision. In practice, an optimal
control problem is solved over a finite future horizon,
but only the first optimal control signal is applied to
the system. Then the optimization horizon is shifted
and the calculations are repeated. The solution of the
optimal control problem depends on the initial state of
the model which is the current state of the plant. In
general, measurements are disturbed by noise or are
missing, resulting in the need for a state estimation
algorithm to determine the initial states under
consideration of the past record of measurements.
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Figure 6: NMPC Loop

The model-based optimization framework looks as

follows (see Figure 6):

e Modelica system models are used to describe the
dynamics of the process and are used for
optimization and state estimation

e  The optimization is solved using JModelica.org,
the open source platform for optimization,
simulation and analysis of complex dynamic
systems. JModelica.org interfaces the numerical
solver IPOPT and CasADi — the framework for
efficient evaluation of expressions and their
derivatives

e For online application the optimal control signal
is applied to the plant using the OPC interface of
the Siemens control system SPPA-T3000 that
performs all power plant automation tasks

e For offline tests pseudo measurement data is used
to estimate the current state of the model. These
measurements are generated by simulating a
detailed model of the power plant including the
control structure provided as co-simulation FMU
exported from Dynaplant

The FMU has an internal state consisting of all values
that are necessary to continue a simulation. This
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feature could be used for NMPC to restart simulations
after initialization with different values of the input
signals. Unfortunately, the FMI 2.0 capability
canGetAndSetFMUState is not yet implemented in
JModelica.org. A workaround was implemented to set
a consistent internal state, consisting of the values of
continuous-time states as well as the iteration variables.
It is worth noting that missing FMI capabilities or
incomplete implementation is not the exception, but the
rule. For each and every intended use case it is up to
the user to test the capabilities of the chosen tool.

2.3 ControlTest in Modelica

This last use case is similar to the one from section
2.1.2, with the notable difference that not only control
code is available in Modelica but also the plant model.

It is intended to show that the openness and
flexibility of native Modelica models should not be
underestimated compared to FMIL FMUs, as a
translated and compiled version of the model, have
well-known drawbacks e.g. when changing interface
definitions or trying to understand the internal
hierarchical model structure.

On a first look, coupling real-world controller code
with physical plant models is a classic use case for
FMI. Generally, there is a clear interface between the
continuous plant model and the discrete controller
implementation.

However, for testing power plant control systems,
we currently prefer to have the full system in one
uniform Modelica model. Although this requires
transferring the graphical structure of control diagrams
as well as the full implementation of all control blocks
to Modelica. More details on this approach can be
found in (Link et al., 2014).

For each study, specific plant models are built,
specifically designed for the scope of the control task
to be tested. Before starting the first simulations, a
considerable amount of work goes into finding
consistent boundary conditions for the relevant parts of
the plant.

Having one homogeneous test unit in Modelica
revealed the following benefits. The interface between
plant and controller is not statically defined at the
beginning. This allows fast adaptions to new controller
strategies. Changes in controller or plant model do not
require exporting new FMUs. Even though exporting
FMUs requires little effort, ensuring to have the right
FMU at the right place, creates unnecessary overhead
during model development.

One holistic Modelica model allows control
engineers and plant engineers to look into the same
model. They both have access to the full system
structure, equations and model-integrated
documentation. This helps both sides to understand the
system behavior and therefore to trust on the results.

This reflects the special situation of usage of FMI in
in-house applications, as already mentioned above.

Regarding documentation, most real-world FMUs
currently lack on this part (e.g. documentation of
model limitations and expected combinations of
parameters and input signals). The FMI specification
allows documentation to be added by the exporting
tool. But, when exporting, it is not guaranteed that the
documentation will be provided to user on the
importing side. One needs to establish a process on
how and where to store the binary FMUs together with
the model source code. In contrast, using Modelica, we
have one single source of truth, being the Modelica
code in version control with hierarchical, model-
integrated documentation.

The mentioned drawbacks of FMI are
characteristically for any model exchange interface,
therefore we do not propose to fix the FMI standard.
Instead, we want to encourage users to carefully
investigate a pure Modelica solution before introducing
FMI interfaces in the tool-chain.

3 Implementation of FMI Support in
Dynaplant

With respect to FMI, we support version 1.0 and 2.0 of
model exchange import as well as 1.0 of co-simulation
export. Implementation efforts are hard to estimate as
they naturally depend e.g. on the experience of the
implementer and also on the amount of optional
features that shall be supported. However, we want to
describe briefly in the following the main steps and
issues of FMI implementation that we experienced in
Dynaplant.

3.1 Import FMI for Model Exchange 1.0

Using an FMU in our tool requires that it can be
handled almost as any other component. This means
that it has an icon that can be dragged and dropped
from a library onto the plant view. Furthermore, the
component’s inputs / outputs do have graphical port
representations that can be connected to ports of other
components. Moreover, a parameter dialog needs to be
available.

In order to support the described user experience, a
gray box component has been added to the component
library. After instantiation it shows a parameter dialog
for specifying a FMU zip archive. The
modelDescription.xml is parsed in C# where we
generated a class from the available xsd scheme for
deserialization. Parameters are then known if revealed
by the FMU and it is possible to draw ports and the
final component shape. FMUs in version 1.0 and 2.0
do not transport graphical information. Thus, own
arrangements have to be done. In our software
components usually have predefined ports and shapes
and it required significant effort to build the final
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component shape only during plant editing. However,
after this specification step no extra effort is needed
during plant editing for an FMU component, compared
to any other component in the plant.

Stepping into simulation, we need to parse the xml-
File again in C++, as much more static model
information (e.g. information on internals and states) is
required during run-time. It did not seem reasonable to
overload already our model file (the plant definition)
with all information and transfer it to C++. The
implementation of calling the FMU functions with the
correct arguments and in the right order was
manageable with the help of the FMI specification and
the FMU SDK of QTronic in mind. As FMUs of
version 1.0 cannot transport information on the
Jacobian, entries have to be calculated numerically
which is quite extensive.

As far as our experience goes, a first implementation
of model import can be set up rather easily, but testing
and bug fixing is quite time consuming. It is often
hindered by tool specific problems like license issues
with the exporting tool (even if all partners have valid
licenses) or unreasonable start values for inputs in the
modelDescription.xml (e.g. some tools give only 0.0
for doubles). These values should be such that they
allow for a successful and useful initialization if
actually used and not overwritten during the import.
Moreover, a general issue in testing is given by the
nature of FMI as it is not possible to debug into the
FMU to better understand what is happening inside a
function call.

3.2 Import FMI for Model Exchange 2.0

Adopting FMI 2.0 has been accomplished by updating
the implementation for FMI 1.0 which has been
described in the section 3.1. The main effort consisted
of updating of the XML parser and of our library of
associated convenience functions in C++.

We now support an alternative way of calculating
the Jacobian in case the capability flag
providesDirectionalDerivatives is set to true. We need
to provide also an alternative treatment in case an FMU
does not support this capability. Generally, the FMI 2.0
specification and also implementation is complicated
due to the large number of optional features, in
particular capability flags. Two FMUs of version 2.0
and possibly from the same exporting tool can actually
be very different in scope and capability. This becomes
apparent only in the specific modelDescription.xml
files.

With respect to performance, some firsts tests were
done in comparing the import of the same Dymola
model as FMU of version 1.0 and 2.0 (Dymola 2016
including bug fix on directional derivatives and
sampling). Using the numerical calculation of the
Jacobian entries, we experienced a significant decrease

in performance between 1.0 and 2.0. For a rather small
example with 92 algebraic and 1322 differential
equations in total and 4500 s simulation time we
measured a +11 % time usage in the DAE solver.
Astonishingly, the loss of time was mainly in Jacobian
calculation, although the FMU contributes no states but
310 events. Using the directional derivatives and the
associated sparsity information, the performance
decreased even further by roughly the same amount.
For another example which actually contributed states,
the performance of 1.0 and 2.0 roughly leveled up
when using directional derivative information which
proved to be a benefit in 2.0. Up to this point, a lot of
questions remain and further tests are clearly indicated
with various types and sizes of models and different
exporting tools. It is not fully clear if import or export
generate the issues.

3.3 Export FMI for Co-Simulation 1.0

Probably due to the different nature of weak and strong
coupling in general, the effort to implement co-
simulation export in our tools was significantly smaller
than for model exchange import.

Most of the work was consumed in revealing plant
information on all inputs / outputs, internals and
parameters in a suiting way and offer access via
fmiGet... and fmiSet... functions. The compliance
checker was very helpful in bringing the
modelDescription.xml in a correct way. It is quite
remarkable that our model file of a Modelica similar
format consumes roughly more than a factor of § less
in storage than the modelDescription.xml including
only inputs/outputs and parameters but no internals.
We derived the learning that it makes sense to look
into the FMI ticket trac for recognized issues in the
specification, e.g., to find out that some importing tools
expect the path to unzipped fmu folders in the call of
fmilnstantiateSlave whereas others expect it to the
zipped path, for instance.

We found testing and bug fixing very difficult and
time-consuming also for co-simulation export. As
Dynaplant is an in-house simulation tool we do not
take part in official FMI cross-checks which could give
a hint on still existing bugs but would probably not
provide significant details on the root of the issues. It is
often hard to track if issues occur in the FMU export
implementation or in the importing environment. For
the latter, the source code is usually unavailable and
debugging possibilities or deeper knowledge on its
communication handling are missing.

An important point in our internal discussions is the
required resources of a co-simulation FMU. It is
necessary to not only transfer one dll but around 35
dlls which are required by our simulator. To begin
with, it is not clear where these should be copied to
upon import such that the importing environment can
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find them because all but one are loaded only
implicitly. Any copy requires administrator rights at
the target location and upon import, an FMU itself only
knows target locations relative to its own unzipped
location or the application path. If the latter is chosen,
serious problems can occur if dlls with an identical
naming can be found there already, potentially of
different versions. Moreover, we face some difficulties
in unloading all dlls from the address space after a run.
The FMI description does not give guidance in dealing
with such questions.

4 Summary

Even if the implementation of FMI support in in-
house simulation tools implies a great effort, it is useful
for many different applications as shown for some use
cases in this paper. In principle, FMI can help or even
enable some of the shown examples and some of our
target applications, but still we face several limitations.

The use cases of chapter 2.1 highlight the urgent
need to further develop the FMI standard with respect
to the interfaces of FMUs. The existing scalar signal
interface is definitely not powerful enough to allow the
convenient application of FMI. Either it is to allow the
implementation of “physical” connectors as needed in
the use case described in chapter 2.1.1. Or to allow
structuring of a huge number of signals as described in
chapter 2.1.2.

A future FMI standard perfectly suited to our in-
house applications would also need to support the
concepts of acausal modeling - similar to the built-in
behavior of Dynaplant and the basic principles of
Modelica. Moreover, we face a mismatch between the
intention of FMI to hide information and a need to
reveal as much information as possible for in-house
application.
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