
Model-based control with FMI and a C++ runtime for Modelica
Rüdiger Franke1 Marcus Walther2 Niklas Worschech3 Willi Braun4 Bernhard Bachmann4

1ABB, ruediger.franke@de.abb.com, 2 TU Dresden, marcus.walther@tu-dresden.de,
3 Bosch Rexroth, niklas.worschech@boschrexroth.de,

4 FH Bielefeld, {willi.braun, bernhard.bachmann}@fh-bielefeld.de

Abstract

Modelica describes physical systems on a high level, us-
ing model objects, multi-dimensional arrays and other
data structures as well as graphical representations.
Modelica models are translated to differential-algebraic
equation systems and compiled to executable code prior
to their execution in numerical solvers. The translation
gives a lot of possibilities for code optimization. This is
particularly important for model-based control applica-
tions.
This paper investigates the exploitation of C++ for Mod-
elica code optimization. C++ supports advanced pro-
gramming concepts and at the same time aims to “leave
no room for a lower-level language … (except for as-
sembly code in rare cases)” (B. Stroustrup: The C++
Programming Language, 2014). The features exploited
here include polymorphism, templates, built-in excep-
tion handling and object destructors.
The ideas have been implemented in the OpenModelica
C++ runtime. The paper describes its enhancement with
new array features and with an FMI 2.0 interface. FMI
serves as interface between modeling tools and control
applications. In particular the new FMI 2.0 meets re-
quirements of numerical optimization solvers in model-
based control.
A publically available application example demonstrates
the achievements. CPU times obtained with the
OpenModelica C++ runtime are significantly faster than
CPU times obtained with the C runtime or with Dymola.
Keywords: Modelica, OpenModelica, FMI, C++,
model-based control, MPC, MHE, SQP, HQP.

Application example

The findings are demonstrated on a DrumBoiler exam-
ple that bases on the Modelica Standard Library. Ex-
ploiting FMI 2.0, the same model is translated and ex-
ported as different FMUs using different Modelica tools,
tool options and compiler flags.

Table: Obtained CPU times using different Modelica
tools and tool options for FMI export

Modelica Tool for
FMU export

CPU time with gcc flag

-O0 -O2 -Ofast

OpenModelica 1.9.3 16.6 s 15.5 s 13.5 s

OpenModelica 1.9.3
+cseCall

6.0 s 5.5 s 5.2 s

Dymola 2015FD01 3.4 s 1.7 s 1.3 s

OpenModelica 1.9.3
+simCodeTaget=Cpp

5.6 s 1.9 s 1.0 s

OpenModelica 1.9.3
+simCodeTaget=Cpp
+cseCall

2.7 s 1.0 s 0.6 s

The widely used optimization solver HQP provides FMI
import. It solves the same startup optimization program
for each FMU. Amazing runtime differences of more
than a factor of 25 are observed for the example, depend-
ing on how the FMU was generated.
The paper describes the optimization approach giving
that much flexibility and investigates why the C++
runtime of OpenModelica is superior.
The described optimization technology serves as basis
for model-based control in many industrial applications.

Figure: DrumBoiler model in OMEdit

	Abstract
	Application example

