
Flattening of Modelica State Machines: A Practical
Symbolic Representation

Bernhard Thiele1 Adrian Pop1 Peter Fritzson1

1PELAB, Linköping University, Sweden,
{bernhard.thiele,adrian.pop,peter.fritzson}@liu.se

Modelica 3.3 introduced dedicated built-in language support for state machines that
was inspired by semantics known from Statechart and mode automata formalisms. The
specification describes the semantics of these constructs in terms of data-flow equations
that allows it to be related to the Modelica DAE representation which is the conceptual
intermediate format of Modelica code after instance creation (flattening). However, a com-
plete transformation of state machine constructs into data-flow equations at the stage of
flattening requires an early commitment to implementation details that potentially hinders
model optimizations at subsequent translation phases. Also, due to the required substan-
tial model transformation the semantic distance between the original source model and the
flattened representation is rather large. Hence, this paper proposes a more versatile sym-
bolic representation for flattened state machine constructs that preserves the state machine’s
composition structure and allows postponing optimizations to subsequent compiler phases.

The proposed approach has been implemented for the OpenModelica compiler. Fig-
ure (a) shows an example of a Modelica state machine using hierarchical and parallel com-
position of state machines. Figure (b) illustrates the compilation process using the interme-
diate representation for state machines.

inner Integer x(start=0);
inner Integer z(start=0);
inner Integer y(start=0);

a

outer output Integer x;
inner outer output Integer y;
inner outer output Integer z;
x = previous(x) + 1;

c
outer output Integer y;
y = previous(y) + 1;

d
outer output Integer y;
y = previous(y) - 1;

e
outer output Integer z;
outer input Integer y;
z = previous(z) + y;

f
outer output Integer z;
outer input Integer y;
z = previous(z) - y;

y == 10

y == 0

z > 100

z < 50

b

outer output Integer x;
x = previous(x) - 1;

(z > 100 and i) or j

x == 0

// assume constant state machine inputs:
input Boolean i=true;
input Boolean j=false;

(a) Modelica state machine using hierarchical and parallel
composition of state machinesa.

aMotivated by the example shown in F. Maraninchi and Y. Ré-
mond: Mode-Automata: a new domain-specific construct for the
development of safe critical systems, Science of Computer Pro-
gramming, 46:219–254, 2003.

Front-end
 parsing & 
 instantiation

Modelica state-
machine model

symbolic state machine
representation

Back-end
sorting &
optimization &
code generation

Simulation
executable

State machine
elaboration

State machine
instantiation

Flat Modelica
"Hybrid DAE" with

(b) Outline of the state machine
compilation process.


